Прямая и обратная пропорциональные зависимости определение. Прямая пропорциональная зависимость

Пример

1,6 / 2 = 0,8; 4 / 5 = 0,8; 5,6 / 7 = 0,8 и т. д.

Коэффициент пропорциональности

Неизменное отношение пропорциональных величин называется коэффициентом пропорциональности . Коэффициент пропорциональности показывает, сколько единиц одной величины приходится на единицу другой .

Прямая пропорциональность

Прямая пропорциональность - функциональная зависимость , при которой некоторая величина зависит от другой величины таким образом, что их отношение остаётся постоянным. Иначе говоря, эти переменные изменяются пропорционально , в равных долях, то есть, если аргумент изменился в два раза в каком-либо направлении, то и функция изменяется тоже в два раза в том же направлении.

Математически прямая пропорциональность записывается в виде формулы:

f (x ) = a x ,a = c o n s t

Обратная пропорциональность

Обра́тная пропорциона́льность - это функциональная зависимость , при которой увеличение независимой величины(аргумента) вызывает пропорциональное уменьшение зависимой величины(функции).

Математически обратная пропорциональность записывается в виде формулы:

Свойства функции:

Источники

Wikimedia Foundation . 2010 .

Пример

1,6 / 2 = 0,8; 4 / 5 = 0,8; 5,6 / 7 = 0,8 и т. д.

Коэффициент пропорциональности

Неизменное отношение пропорциональных величин называется коэффициентом пропорциональности . Коэффициент пропорциональности показывает, сколько единиц одной величины приходится на единицу другой .

Прямая пропорциональность

Прямая пропорциональность - функциональная зависимость , при которой некоторая величина зависит от другой величины таким образом, что их отношение остаётся постоянным. Иначе говоря, эти переменные изменяются пропорционально , в равных долях, то есть, если аргумент изменился в два раза в каком-либо направлении, то и функция изменяется тоже в два раза в том же направлении.

Математически прямая пропорциональность записывается в виде формулы:

f (x ) = a x ,a = c o n s t

Обратная пропорциональность

Обра́тная пропорциона́льность - это функциональная зависимость , при которой увеличение независимой величины(аргумента) вызывает пропорциональное уменьшение зависимой величины(функции).

Математически обратная пропорциональность записывается в виде формулы:

Свойства функции:

Источники

Wikimedia Foundation . 2010 .

Смотреть что такое "Прямая пропорциональность" в других словарях:

    прямая пропорциональность - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN direct ratio … Справочник технического переводчика

    прямая пропорциональность - tiesioginis proporcingumas statusas T sritis fizika atitikmenys: angl. direct proportionality vok. direkte Proportionalität, f rus. прямая пропорциональность, f pranc. proportionnalité directe, f … Fizikos terminų žodynas

    - (от лат. proportionalis соразмерный, пропорциональный). Соразмерность. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ПРОПОРЦИОНАЛЬНОСТЬ отлат. proportionalis, пропорциональный. Соразмерность. Объяснение 25000… … Словарь иностранных слов русского языка

    ПРОПОРЦИОНАЛЬНОСТЬ, пропорциональности, мн. нет, жен. (книжн.). 1. отвлеч. сущ. к пропорциональный. Пропорциональность частей. Пропорциональность телосложения. 2. Такая зависимость между величинами, когда они пропорционально (см. пропорциональный … Толковый словарь Ушакова

    Пропорциональными называются две взаимно зависимые величины, если отношение их значений остается неизменным.. Содержание 1 Пример 2 Коэффициент пропорциональности … Википедия

    ПРОПОРЦИОНАЛЬНОСТЬ, и, жен. 1. см. пропорциональный. 2. В математике: такая зависимость между величинами, при к рой увеличение одной из них влечёт за собой изменение другой во столько же раз. Прямая п. (при к рой с увеличением одной величины… … Толковый словарь Ожегова

    И; ж. 1. к Пропорциональный (1 зн.); соразмерность. П. частей. П. телосложения. П. представительства в парламенте. 2. Матем. Зависимость между пропорционально изменяющимися величинами. Коэффициент пропорциональности. Прямая п. (при которой с… … Энциклопедический словарь

Типы зависимостей

Рассмотрим зарядку батареи. В качестве первой величины возьмем время, которое она заряжается. Вторая величина – время, которое она будет работать после зарядки. Чем дольше будет заряжаться батарея, тем дольше она будет работать. Процесс будет длиться до тех пор, пока батарея не полностью зарядится.

Зависимость времени работы батареи от времени, которое она заряжается

Замечание 1

Такая зависимость называется прямой :

С увеличением одной величины увеличивается и вторая. С уменьшением одной величины уменьшается и вторая величина.

Рассмотрим другой пример.

Чем больше книг прочитает ученик, тем меньше ошибок сделает в диктанте. Или чем выше подняться в горы, тем ниже будет атмосферное давление.

Замечание 2

Такая зависимость называется обратной :

С увеличением одной величины уменьшается вторая. С уменьшением одной величины увеличивается вторая величина.

Таким образом, в случае прямой зависимости обе величины изменяются одинаково (обе либо увеличиваются, либо уменьшаются), а в случае обратной зависимости – противоположно (одна увеличивается, а другая уменьшается либо наоборот).

Определение зависимостей между величинами

Пример 1

Время, затраченное для похода в гости к другу, составляет $20$ минут. При увеличении скорости (первой величины) в $2$ раза найдем, как изменится время (вторая величина), которое будет затрачено на путь к другу.

Очевидно, что время уменьшится в $2$ раза.

Замечание 3

Такую зависимость называют пропорциональной :

Во сколько раз изменится одна величина, во столько раз изменится и вторая.

Пример 2

За $2$ булки хлеба в магазине нужно заплатить 80 рублей. Если нужно купить $4$ булки хлеба (количество хлеба увеличивается в $2$ раза), во сколько раз придется больше заплатить?

Очевидно, что стоимость также увеличится в $2$ раза. Имеем пример пропорциональной зависимости.

В обоих примерах были рассмотрены пропорциональные зависимости. Но в примере с булками хлеба величины изменяются в одну сторону, следовательно, зависимость является прямой . А в примере с походом к другу зависимость между скоростью и временем – обратная . Таким образом, существует прямо пропорциональная зависимость и обратно пропорциональная зависимость .

Прямая пропорциональность

Рассмотрим $2$ пропорциональные величины: количество булок хлеба и их стоимость. Пусть $2$ булки хлеба стоят $80$ рублей. При увеличении количества булок в $4$ раза ($8$ булок) их общая стоимость будет составлять $320$ рублей.

Отношение количества булок: $\frac{8}{2}=4$.

Отношение стоимости булок: $\frac{320}{80}=4$.

Как видно, эти отношения равны между собой:

$\frac{8}{2}=\frac{320}{80}$.

Определение 1

Равенство двух отношений называется пропорцией .

При прямо пропорциональной зависимости получается отношение, когда изменение первой и второй величины совпадает:

$\frac{A_2}{A_1}=\frac{B_2}{B_1}$.

Определение 2

Две величины называются прямо пропорциональными , если при изменении (увеличении или уменьшении) одной из них во столько же раз изменяется (увеличивается или уменьшается соответственно) и другая величина.

Пример 3

Автомобиль проехал $180$ км за $2$ часа. Найти время, за которое он с той же скоростью проедет в $2$ раза большее расстояние.

Решение .

Время прямо пропорционально расстоянию:

$t=\frac{S}{v}$.

Во сколько раз увеличится расстояние, при постоянной скорости, во столько же раз увеличится время:

$\frac{2S}{v}=2t$;

$\frac{3S}{v}=3t$.

Автомобиль проехал $180$ км – за время $2$ часа

Автомобиль проедет $180 \cdot 2=360$ км – за время $x$ часов

Чем больше расстояние проедет автомобиль, тем большее время ему понадобится. Следовательно, зависимость между величинами прямо пропорциональная.

Составим пропорцию:

$\frac{180}{360}=\frac{2}{x}$;

$x=\frac{360 \cdot 2}{180}$;

Ответ : автомобилю потребуется $4$ часа.

Обратная пропорциональность

Определение 3

Решение .

Время обратно пропорционально скорости:

$t=\frac{S}{v}$.

Во сколько раз увеличивается скорость, при том же пути, во столько же раз уменьшается время:

$\frac{S}{2v}=\frac{t}{2}$;

$\frac{S}{3v}=\frac{t}{3}$.

Запишем условие задачи в виде таблицы:

Автомобиль проехал $60$ км - за время $6$ часов

Автомобиль проедет $120$ км – за время $x$ часов

Чем больше скорость автомобиля, тем меньше времени ему понадобится. Следовательно, зависимость между величинами обратно пропорциональная.

Составим пропорцию.

Т.к. пропорциональность обратная, второе отношение в пропорции переворачиваем:

$\frac{60}{120}=\frac{x}{6}$;

$x=\frac{60 \cdot 6}{120}$;

Ответ : автомобилю потребуется $3$ часа.

Сегодня мы рассмотрим, какие величины называются обратно пропорциональными, как выглядит график обратной пропорциональности и как все это может вам пригодится не только на уроках математики, но и вне школьных стен.

Такие разные пропорциональности

Пропорциональностью называют две величины, которые взаимно зависимы друг от друга.

Зависимость может быть прямой и обратной. Следовательно, отношения между величинами описывают прямая и обратная пропорциональность.

Прямая пропорциональность – это такая зависимость двух величин, при которой увеличение либо уменьшение одной из них ведет к увеличению либо уменьшению другой. Т.е. их отношение не изменяется.

Например, чем больше усилий вы прилагаете для подготовки к экзаменам, тем выше ваши оценки. Или чем больше вещей вы берете с собой в поход, тем тяжелее нести ваш рюкзак. Т.е. количество затраченных на подготовку к экзаменам усилий прямо пропорционально полученным оценкам. И количество запакованных в рюкзак вещей прямо пропорционально его весу.

Обратная пропорциональность – это функциональная зависимость, при которой уменьшение либо увеличение в несколько раз независимой величины (ее называют аргументом) вызывает пропорциональное (т.е. во столько же раз) увеличение либо уменьшение зависимой величины (ее называют функцией).

Проиллюстрируем простым примером. Вы хотите купить на рынке яблок. Яблоки на прилавке и количество денег в вашем кошельке находятся в обратной пропорциональности. Т.е. чем больше вы купите яблок, тем меньше денег у вас останется.

Функция и ее график

Функцию обратной пропорциональности можно описать как y = k/x . В котором x ≠ 0 и k ≠ 0.

Эта функция обладает следующими свойствами:

  1. Областью ее определения является множество всех действительных чисел, кроме x = 0. D (y ): (-∞; 0) U (0; +∞) .
  2. Областью значений являются все действительные числа, кроме y = 0. Е(у): (-∞; 0) U (0; +∞) .
  3. Не имеет наибольших и наименьших значений.
  4. Является нечетной и ее график симметричен относительно начала координат.
  5. Непериодическая.
  6. Ее график не пересекает оси координат.
  7. Не имеет нулей.
  8. Если k > 0 (т.е. аргумент возрастает), функция пропорционально убывает на каждом из своих промежутков. Если k < 0 (т.е. аргумент убывает), функция пропорционально возрастает на каждом из своих промежутков.
  9. При возрастании аргумента (k > 0) отрицательные значения функции находятся в промежутке (-∞; 0), а положительные – (0; +∞). При убывании аргумента (k < 0) отрицательные значения расположены на промежутке (0; +∞), положительные – (-∞; 0).

График функции обратной пропорциональности называется гиперболой. Изображается следующим образом:

Задачи на обратную пропорциональность

Чтобы стало понятнее, давайте разберем несколько задач. Они не слишком сложные, а их решение поможет вам наглядно представить, что такое обратная пропорциональность и как эти знания могут пригодиться в вашей обычной жизни.

Задача №1. Автомобиль движется со скоростью 60 км/ч. Чтобы доехать до места назначения, ему потребовалось 6 часов. Сколько времени ему потребуется, чтобы преодолеть такое же расстояние, если он будет двигаться со скоростью в 2 раза выше?

Можем начать с того, что запишем формулу, которая описывает отношения времени, расстояния и скорости: t = S/V. Согласитесь, она очень напоминает нам функцию обратной пропорциональности. И свидетельствует о том, что время, которое автомобиль проводит в пути, и скорость, с которой он движется, находятся в обратной пропорциональности.

Чтобы убедиться в этом, давайте найдем V 2 , которая по условию выше в 2 раза: V 2 = 60 * 2 = 120 км/ч. Затем рассчитаем расстояние по формуле S = V * t = 60 * 6 = 360 км. Теперь совсем несложно узнать время t 2 , которое требуется от нас по условию задачи: t 2 = 360/120 = 3 ч.

Как видите время в пути и скорость движения действительно обратно пропорциональны: со скоростью в 2 раза выше изначальной автомобиль потратит в 2 раза меньше времени на дорогу.

Решение этой задачи можно записать и в виде пропорции. Для чего сначала составим такую схему:

↓ 60 км/ч – 6 ч

↓120 км/ч – х ч

Стрелки обозначают обратно пропорциональную зависимость. А также подсказывают, что при составлении пропорции правую часть записи надо перевернуть: 60/120 = х/6. Откуда получаем х = 60 * 6/120 = 3 ч.

Задача №2. В мастерской трудятся 6 рабочих, которые с заданным объемом работы справляются за 4 часа. Если количество рабочих сократить в 2 раза, сколько времени потребуется оставшимся, чтобы выполнить тот же объем работы?

Запишем условия задачи в виде наглядной схемы:

↓ 6 рабочих – 4 ч

↓ 3 рабочих – х ч

Запишем это в виде пропорции: 6/3 = х/4. И получим х = 6 * 4/3 = 8 ч. Если рабочих станет в 2 раза меньше, оставшиеся затратят на выполнение всей работы в 2 раза больше времени.

Задача №3. В бассейн ведут две трубы. Через одну трубу вода поступает со скоростью 2 л/с и наполняет бассейн за 45 минут. Через другую трубу бассейн наполнится за 75 минут. С какой скоростью вода поступает в бассейн через эту трубу?

Для начала приведем все данные нам по условию задачи величины к одинаковым единицам измерения. Для этого выразим скорость наполнения бассейна в литрах в минуту: 2 л/с = 2 * 60 = 120 л/мин.

Поскольку из условия следует, что через вторую трубу бассейн заполняется медленнее, значит, и скорость поступления воды ниже. На лицо обратная пропорциональность. Неизвестную нам скорость выразим через х и составим такую схему:

↓ 120 л/мин – 45 мин

↓ х л/мин – 75 мин

А затем составим пропорцию: 120/х = 75/45, откуда х = 120 * 45/75 = 72 л/мин.

В задаче скорость наполнения бассейна выражена в литрах в секунду, приведем полученный нами ответ к такому же виду: 72/60 = 1,2 л/с.

Задача №4. В небольшой частной типографии печатают визитки. Сотрудник типографии работает со скоростью 42 визитки в час и трудится полный рабочий день – 8 часов. Если бы он работал быстрее и печатал 48 визиток за час, насколько раньше он смог бы уйти домой?

Идем проверенным путем и составляем по условию задачи схему, обозначив искомую величину как х:

↓ 42 визитки/ч – 8 ч

↓ 48 визитки/ч – х ч

Перед нами обратно пропорциональная зависимость: во сколько раз больше визиток в час напечатает сотрудник типографии, во столько же раз меньше времени ему потребуется на выполнение одной и той же работы. Зная это, составим пропорцию:

42/48 = х/8, х = 42 * 8/48 = 7ч.

Таким образом, справившись с работой за 7 часов, сотрудник типографии смогу бы уйти домой на час раньше.

Заключение

Нам кажется, что эти задачи на обратную пропорциональность действительно несложные. Надеемся, что теперь вы тоже считаете их такими. А главное, что знание об обратно пропорциональной зависимости величин действительно может оказаться для вас полезным еще не раз.

Не только на уроках математики и экзаменах. Но и тогда, когда вы соберетесь отправиться в путешествие, пойдете за покупками, решите немного подработать в каникулы и т.п.

Расскажите нам в комментариях, какие примеры обратной и прямой пропорциональной зависимости вы замечаете вокруг себя. Пускай это будет такая игра. Вот увидите, как это увлекательно. Не забудьте «расшарить» эту статью в социальных сетях, чтобы ваши друзья и одноклассники тоже смогли поиграть.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Выполнил: Чепкасов Родион

учащийся 6 «Б» класса

МБОУ «СОШ № 53»

г. Барнаул

Руководитель: Булыкина О.Г.

учитель математики

МБОУ «СОШ № 53»

г. Барнаул

    Введение. 1

    Отношения и пропорции. 3

    Прямая и обратная пропорциональные зависимости. 4

    Применение прямой и обратной пропорциональной 6

зависимости при решении различных задач.

    Заключение. 11

    Литература. 12

Введение .

Слово пропорция происходит от латинского слова proportion, означающее вообще соразмерность, выровненность частей (определенное соотношение частей между собой). В древности учение о пропорциях было в большом почёте у пифагорейцев. С пропорциями они связывали мысли о порядке и красоте в природе, о созвучных аккордах в музыке и гармонии во вселенной. Некоторые виды пропорций они называли музыкальными или гармоническими.

Еще в глубокой древности человеком было обнаружено, что все явления в природе связаны друг с другом, что все пребывает в непрерывном движении, изменении, и, будучи выражено числом, обнаруживает удивительные закономерности.

Пифагорейцы и их последователи всему сущему в мире искали числовое выражение. Ими было обнаружено; что математические пропорции лежат в основе музыки (отношение длины струны к высоте тона, отношения между интервалами, соотношение звуков в аккордах, дающих гармоническое звучание). Пифагорейцы пытались математически обосновать идею единства мира, утверждали, что а основе мироздания лежат симметричные геометрические формы. Пифагорейцы искали математическое обоснование красоте.

Вслед за пифагорейцами средневековый ученый Августин назвал красоту "числовым равенством". Философ-схоласт Бонавентура писал: "Красоты и наслаждения нет без пропорциональности, пропорциональность же прежде всего существует в числах. Необходимо, чтобы все поддавалось счислению". Об использовании пропорции в искусстве Леонардо да Винчи писал в своем трактате о живописи: "Живописец воплощает в форме пропорции те же таящиеся в природе закономерности, которые в форме числового закона по знает ученый".

Пропорциями пользовались при решении разных задач и в древности и в средние века. Определенные типы задач и теперь легко и быстро решаются при помощи пропорций. Пропорции и пропорциональность применялись и применяются не только в математике, но и в архитектуре, искусстве. Пропорциональность в архитектуре и искусстве означает соблюдение определенных соотношений между размерами разных частей здания, фигуры, скульптуры или другого произведения искусств. Пропорциональность в таких случаях является условием правильного и красивого построения и изображения

В своей работе я пытался рассмотреть применение прямой и обратной пропорциональной зависимостей в различных областях окружающей жизни, проследить связь с учебными предметами через задачи.

Отношения и пропорции .

Частное двух чисел называется отношением этих чисел .

Отношение показывает , во сколько раз первое число больше второго или какую часть первое число составляет от второго.

Задача.

В магазин привезли 2,4 т груш и 3,6 т яблок. Какую часть привезённых фруктов составляют груши?

Решение . Найдём сколько всего привезли фруктов: 2,4+3,6=6(т). Чтобы найти какую часть привезённых фруктов составляют груши, составим отношение 2,4:6=. Ответ можно также записать в виде десятичной дроби или в процентах: = 0,4 = 40 %.

Взаимно обратными называют числа , произведения которых равно 1. Поэтому отношения называют обратным отношению .

Рассмотрим два равных отношения: 4,5:3 и 6:4. Поставим между ними знак равенства и получим пропорцию: 4,5:3=6:4.

Пропорция – это равенство двух отношений: a : b =c :d или = , где a и d – крайние члены пропорции , c и b – средние члены (все члены пропорции отличны от нуля).

Основное свойство пропорции :

в верной пропорции произведение крайних членов равно произведению средних членов.

Применив переместительное свойство умножения, получим, что в верной пропорции можно менять местами крайние члены или средние члены. Получившиеся пропорции также будут верными.

Используя основное свойство пропорции, можно находить её неизвестный член, если все остальные члены известны.

Чтобы найти неизвестный крайний член пропорции, надо перемножить средние члены и разделить на известный крайний член. x : b = c : d , x =

Чтобы найти неизвестный средний член пропорции, надо перемножить крайние члены и разделить на известный средний член. a : b =x : d , x =.

Прямая и обратные пропорциональные зависимости.

Значения двух различных величин могут взаимно зависеть друг от друга. Так, площадь квадрата зависит от длины его стороны, и обратно - длина стороны квадратазависит от его площади.

Две величины называют пропорциональными, если при увеличении

(уменьшении) одной из них в несколько раз, другая увеличивается (уменьшается) во столько же раз.

Если две величины прямо пропорциональны, то отношения соответствующих значений этих величин равны.

Пример прямой пропорциональной зависимости .

На заправочной станции 2 л бензина весят 1,6 кг. Сколько будут весить 5 л бензина?

Решение:

Вес керосина пропорционален его объему.

2л - 1,6 кг

5л - х кг

2:5=1,6:х,

х= 5*1,6 х =4

Ответ: 4 кг.

Здесь отношение веса к объему остается неизменным.

Две величины называются обратно пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз, другая уменьшается (увеличивается) во столько же раз.

Если величины обратно пропорциональны, то отношение значений одной величины равно обратному отношению соответствующих значений другой величины.

П ример обратной пропорциональной зависимости.

Два прямоугольника имеют одинаковую площадь. Длина первого прямоугольника 3,6 м, а ширина 2,4 м. Длина второго прямоугольника 4,8 м. Найдём ширину второго прямоугольника.

Решение:

1 прямоугольник 3,6 м 2,4 м

2 прямоугольник 4,8 м х м

3,6 м х м

4,8 м 2,4 м

х = 3,6*2,4 = 1,8 м

Ответ: 1,8 м.

Как видим, задачи на пропорциональные величины можно решать с помощью пропорций.

Не всякие две величины являются прямо пропорциональными или обратно пропорциональными. Например, рост ребёнка увеличивается при увеличении его возраста, но эти величины не являются пропорциональными, так как при удвоении возраста рост ребёнка не удваивается.

Практическое применение прямой и обратной пропорциональной зависимости.

Задача № 1

В школьной библиотеке 210 учебников математики, что составляет 15% всего библиотечного фонда. Сколько всего книг в библиотечном фонде?

Решение:

Всего учебников - ? - 100%

Математики - 210 -15%

15 % 210 уч.

Х = 100* 210 = 1400 учебников

100% х уч. 15

Ответ: 1400 учебников.

Задача № 2

Велосипедист за 3 часа проезжает 75 км. За какое время велосипедист проедит 125 км с той же скоростью?

Решение:

3 ч – 75 км

Ч – 125 км

Время и расстояние являются прямо пропорциональными величинами, поэтому

3: х = 75: 125,

х=
,

х=5.

Ответ: за 5 ч.

Задача № 3

8 одинаковых труб заполняют бассейн за 25 минут. За сколько минут заполнят бассейн 10 таких труб?

Решение:

8 труб – 25 минут

10 труб - ? минут

Количество труб обратно пропорционально времени, поэтому

8: 10 = х: 25,

х =

х = 20

Ответ: за 20 минут.

Задача № 4

Бригада из 8 рабочих выполняет задание за 15 дней. Сколько рабочих сможет выполнить задание за 10 дней, работая с той же производительностью?

Решение:

8 рабочих – 15 дней

Рабочих - 10 дней

Количество рабочих обратно пропорционально количеству дней, поэтому

х: 8 = 15: 10,

х=
,

х= 12.

Ответ: 12 рабочих.

Задача № 5

Из 5,6 кг помидоров получают 2 л соуса. Сколько литров соуса можно получить из 54 кг помидоров?

Решение:

5,6 кг – 2 л

54 кг - ? л

Количество килограммов помидоров прямо пропорционально количеству получаемого соуса, поэтому

5,6: 54 = 2: х,

х =
,

х = 19 .

Ответ: 19 л.

Задача № 6

Для отопления здания школы заготовлено угля на 180 дней при норме расхода

0,6 т угля в день. На сколько дней хватит этого запаса, если его расходовать ежедневно по 0,5 т?

Решение:

Кол-во дней

Норма расхода

Количество дней обратно пропорционально норме расхода угля, поэтому

180: х = 0,5: 0,6,

х = 180*0,6:0,5,

х = 216.

Ответ: на 216 дней.

Задача № 7

В железной руде на 7 частей железа приходится 3 части примесей. Сколько тонн примесей в руде, которая содержит 73,5 т железа?

Решение:

Кол-во частей

Масса

Железо

73,5

Примеси

Количество частей прямо пропорционально массе, поэтому

7: 73,5 = 3: х.

х = 73,5 * 3: 7,

х = 31,5.

Ответ: 31,5 т

Задача № 8

Автомобиль проехал 500 км, истратив 35 л бензина. Сколько литров бензина потребуется, чтобы проехать 420 км?

Решение:

Расстояние, км

Бензин, л

Расстояние прямо пропорционально расходованию бензина, поэтому

500: 35 = 420: х,

х = 35*420:500,

х = 29,4.

Ответ: 29,4 л

Задача № 9

За 2 часа поймали 12 карасей. Сколько карасей поймают за 3 часа?

Решение:

Количество карасей не зависит от времени. Эти величины не являются ни прямо пропорциональными, ни обратно пропорциональными.

Ответ: ответа не существует.

Задача № 10

Горнорудному предприятию требуется закупить на определённую сумму денег 5 новых машин по цене 12 тыс.рублей за одну. Сколько таких машин сможет купить предприятие, если цена за одну машину станет 15 тыс.рублей?

Решение:

Кол-во машин, шт.

Цена, тыс.руб.

Количество машин обратно пропорционально стоимости, поэтому

5: х = 15: 12,

х= 5*12:15,

х=4.

Ответ: 4 машины.

Задача № 11

В городе N на площади P находится магазин, хозяин которого настолько строг, что за опоздание вычитает из заработной платы 70 рублей за 1 опоздание в день. В одном отделе работают две девушки Юля и Наташа. Их заработная плата зависит от числа рабочих дней. Юля за 20 дней получила 4100 рублей, а Наташа за 21 день получить должна бы больше, но она опаздывала 3 дня подряд. Сколько рублей получит Наташа?

Решение:

Рабочие дни

Зарплата, руб.

Юля

4100

Наташа

Зарплата прямо пропорционально количеству рабочих дней, поэтому

20: 21 = 4100: х,

х= 4305.

4305 руб. должна была получить Наташа.

4305 – 3 * 70 = 4095 (руб.)

Ответ: Наташа получит 4095 руб.

Задача № 12

Расстояние между двумя городами на карте равно 6 см. Найдите расстояние между этими городами на местности, если масштаб карты 1: 250000.

Решение:

Обозначим расстояние между городами на местности через х (в сантиметрах) и найдём отношение длины отрезка на карте к расстоянию на местности, которое будет равно масштабу карты: 6: х = 1: 250000,

х = 6*250000,

х = 1500000.

1500000 см = 15 км

Ответ: 15 км.

Задача № 13

В 4000 г раствора содержится 80 г соли. Какова концентрация соли в данном растворе?

Решение:

Масса, г

Концентрация, %

Раствор

4000

Соль

4000: 80 = 100: х,

х =
,

х = 2.

Ответ: концентрация соли составляет 2 %.

Задача № 14

Банк даёт кредит под 10% годовых. Вы получили кредит 50 000 рублей. Какую сумму Вы должны вернуть банку через год?

Решение:

50 000 руб.

100%

х руб.

50000: х = 100: 10,

х= 50000*10:100,

х=5000.

5000 руб. составляет 10%.

50 000 + 5000=55 000 (руб.)

Ответ: через год банку вернут 55 000 руб.

Заключение.

Как видим из приведённых примеров, прямая и обратная пропорциональные зависимости применимы в различных областях жизни:

Экономике,

Торговле,

На производстве и промышленности,

Школьной жизни,

Кулинарии,

Строительстве и архитектуре.

Спорте,

Животноводстве,

Топографии,

Физики,

Химии и т.д.

В русском языке также встречаются пословицы и поговорки, устанавливающие прямую и обратную зависимости:

Как аукнется, так и откликнется.

Чем выше пень, тем выше тень.

Чем больше народа, тем меньше кислорода.

И готово, да бестолково.

Математика – одна из древнейших наук, возникла она на основе потребностей и нужд человечества. Пройдя историю становления еще с Древней Греции, она до сих пор остается актуальной и необходимой в повседневной жизни любого человека. Понятие о прямой и обратной пропорциональной зависимости известны еще с древних времен, поскольку именно законы пропорции двигали архитекторами при какой-либо постройке или создании какой-либо скульптуры.

Знания о пропорциях широко используются во всех сферах жизни и деятельности человека – без них не обойтись при написании картин (пейзажей, натюрмортов, портретов и прочее), также имеют широкое распространение среди архитекторов и инженеров, – , в общем, тяжело себе представить создание хоть чего-нибудь без использования знаний о пропорциях и их соотношении.

Литература.

    Математика-6, Н.Я. Виленкин и др.

    Алгебра -7, Г.В. Дорофеев и др.

    Математика-9, ГИА-9, под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова

    Математика-6, дидактические материалы, П.В. Чулков, А.Б. Уединов

    Задачи по математике для 4-5 классов, И.В.Баранова и др., М. «Просвещение»1988

    Сборник задач и примеров по математике 5-6 класс, Н.А. Терешин,

Т.Н. Терешина, М. «Аквариум» 1997