Есть ли симметрия в окружающем мире. Врезультате работы перед собой мы поставили вопросы: Для чего надо знать симметрию, где в окружающем мире она встречается? Симметрия сквозь века

На протяжении веков симметрия остается предметом, который очаровывает философов, астрономов, математиков, художников, архитекторов и физиков. Древние греки были совершенно одержимы ею – и даже сегодня мы, как правило, сталкиваемся с симметрией во всем от расположения мебели до стрижки волос.

Просто имейте в виду: как только вы осознаете это, вы, вероятно, испытаете непреодолимое желание искать симметрию во всем, что видите.

(Всего 10 фото)

Спонсор поста: Программа для скачивания музыки ВКонтакте : Новая версия программы «Лови в контакте» предоставляет возможность легко и быстро скачивать музыку и видео, размещенные пользователями, со страниц самой известной социальной сети vkontakte.ru.

1. Брокколи романеско

Возможно увидев брокколи романеско в магазине, вы подумали, что это ещё один образец генномодифицированного продукта. Но на самом деле это ещё один пример фрактальной симметрии природы. Каждое соцветие брокколи имеет рисунок логарифмической спирали. Романеско внешне похожа на брокколи, а по вкусу и консистенции – на цветную капусту. Она богата каротиноидами, а также витаминами С и К, что делает её не только красивой, но и здоровой пищей.

На протяжении тысяч лет люди удивлялись идеальной гексагональной форме сот и спрашивали себя, как пчелы могут инстинктивно создать форму, которую люди могут воспроизвести только с помощью циркуля и линейки. Как и почему пчелы имеют страстное желание создавать шестиугольники? Математики считают, что это идеальная форма, которая позволяет им хранить максимально возможное количество меда, используя минимальное количество воска. В любом случае, все это продукт природы, и это чертовски впечатляет.

3. Подсолнухи

Подсолнухи могут похвастаться радиальной симметрией и интересным типом симметрии, известной как последовательность Фибоначчи. Последовательность Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 и т.д. (каждое число определяется суммой двух предыдущих чисел). Если бы мы не спешили и подсчитали количество семян в подсолнухе, то мы бы обнаружили, что количество спиралей растет по принципам последовательности Фибоначчи. В природе есть очень много растений (в том числе и брокколи романеско), лепестки, семена и листья которых отвечают этой последовательности, поэтому так трудно найти клевер с четырьмя листочками.

Но почему подсолнечник и другие растения соблюдают математические правила? Как и шестиугольники в улье, все это – вопрос эффективности.

4. Раковина Наутилуса

Помимо растений, некоторые животные, например Наутилус, отвечают последовательности Фибоначчи. Раковина Наутилуса закручивается в «спираль Фибоначчи». Раковина пытается поддерживать одну и ту же пропорциональную форму, что позволяет ей сохранять её на протяжении всей жизни (в отличие от людей, которые меняют пропорции на протяжении жизни). Не все Наутилусы имеют раковину, выстроенную по правилам Фибоначчи, но все они отвечают логарифмической спирали.

Прежде, чем вы позавидуете моллюскам-математикам, вспомните, что они не делают этого специально, просто такая форма наиболее рациональна для них.

5. Животные

Большинство животных имеют двустороннюю симметрию, что означает, что они могут быть разделены на две одинаковых половинки. Даже люди обладают двусторонней симметрией, и некоторые ученые полагают, что симметрия человека является наиболее важным фактором, который влияет на восприятие нашей красоты. Другими словами, если у вас однобокое лицо, то остается надеяться, что это компенсируется другими хорошими качествами.

Некоторые доходят до полной симметрии в стремлении привлечь партнера, например павлин. Дарвин был положительно раздражен этой птицей, и написал в письме, что «Вид перьев в хвосте павлина, всякий раз, когда я смотрю на него, делает меня больным!» Дарвину, хвост казался обременительным и не имеющим эволюционного смысла, так как он не соответствовал его теории «выживания наиболее приспособленных». Он был в ярости, пока не придумал теорию полового отбора, которая утверждает, что животные развивают определенные функции, чтобы увеличить свои шансы на спаривание. Поэтому павлины имеют различные приспособления для привлечения партнерши.

Есть около 5000 типов пауков, и все они создают почти идеальное круговое полотно с радиальными поддерживающими нитями почти на равном расстоянии и спиральной тканью для ловли добычи. Ученые не уверены, почему пауки так любят геометрию, так как испытания показали, что круглое полотно не заманит еду лучше, чем полотно неправильной формы. Ученые предполагают, что радиальная симметрия равномерно распределяет силу удара, когда жертва попадает в сети, в результате чего получается меньше разрывов.


Дайте паре обманщиков доску, косилки и спасительную темноту, и вы увидите, что люди тоже создают симметричные формы. Из-за того, что круги на полях отличаются сложностью дизайна и невероятной симметрией, даже после того, как создатели кругов признались и продемонстрировали свое мастерство, многие люди до сих пор верят, что это сделали космические пришельцы.

По мере усложнения кругов все больше проясняется их искусственное происхождение. Нелогично предполагать, что пришельцы будут делать свои сообщения все более трудными, когда мы не смогли расшифровать даже первые из них.

Независимо от того, как они появились, круги на полях приятно рассматривать, главным образом потому, что их геометрия впечатляет.


Даже такие крошечные образования, как снежинки, регулируются законами симметрии, так как большинство снежинок имеет шестигранную симметрию. Это происходит в частности из-за того, как молекулы воды выстраиваются, когда затвердевают (кристаллизуются). Молекулы воды приобретают твердое состояние, образуя слабые водородные связи, они выравниваются в упорядоченном расположении, которое уравновешивает силы притяжения и отталкивания, формируя гексагональную форму снежинки. Но при этом каждая снежинка симметрична, но ни одна снежинка не похожа на другую. Это происходит потому, что падая с неба, каждая снежинка испытывает уникальные атмосферные условия, которые заставляют её кристаллы располагаться определенным образом.

9. Галактика Млечный Путь

Как мы уже видели, симметрия и математические модели существуют почти везде, но разве эти законы природы ограничиваются нашей планетой? Очевидно, нет. Недавно открыли новую секцию на краю Галактики Млечного Пути, и астрономы считают, что галактика представляет собой почти идеальное зеркальное отражение себя.

10. Симметрия Солнца-Луны

Если учесть, что Солнце имеет диаметр 1,4 млн. км, а Луна – 3474 км, кажется почти невозможным то, что Луна может блокировать солнечный свет и обеспечивать нам около пяти солнечных затмений каждые два года. Как это получается? Так совпало, что наряду с тем, что ширина Солнца примерно в 400 раз больше, чем Луна, Солнце также в 400 раз дальше. Симметрия обеспечивает то, что Солнце и Луна получаются одного размера, если смотреть с Земли, и поэтому Луна может закрыть Солнце. Конечно, расстояние от Земли до Солнца может увеличиваться, поэтому иногда мы видим кольцевые и неполные затмения. Но каждые один-два года происходит точное выравнивание, и мы становимся свидетелями захватывающих событий, известных как полное солнечное затмение. Астрономы не знают, как часто встречается такая симметрия среди других планет, но они думают, что это довольно редкое явление. Тем не менее, мы не должны предполагать, что мы особенные, так как все это дело случая. Например, каждый год Луна отдаляется примерно на 4 см от Земли, это означает, что миллиарды лет назад каждое солнечное затмение было бы полным затмением. Если и дальше все пойдет так, то полные затмения, в конце концов, исчезнут, и это будет сопровождаться исчезновением кольцевых затмений. Получается, что мы просто находимся в нужном месте в нужное время, чтобы увидеть это явление.

Класс: 8

Презентация к уроку





















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: обучить строить осевую симметрию геометрических фигур.

Задачи:

  1. Образовательная:
  • рассмотреть симметричных точек и фигур относительно прямой;
  • научить строить симметричные точки и распознавать фигуры, обладающие осевой симметрией;
  • рассмотреть осевую симметрию как свойство некоторых геометрических фигур.
  • получить представление о симметрии в математике и окружающем нас мире.
  • Развивающая:
    • развивать логическое мышление;
    • активизировать мыслительную деятельность с помощью применения информационных технологий
  • Воспитательная: развития интеллекта, внимания, восприятия, памяти, мышления, воображения, развивать общую культуру личности.
  • Формы организации учебной деятельности: общеклассная, индивидуальная, парная.

    Тип урока: Изучение и первичное закрепление новых знаний.

    План урока:

    • симметрия точки относительно прямой;
    • построение осевой симметрии точки на плоскости;
    • симметрия фигуры относительно прямой;
    • построение осевой симметрии геометрических фигур;
    • применение полученных знаний при решении задач.

    Оборудование: проектор; экран; двусторонняя доска (мел, маркер); угольник; раздаточный материал; указка учителя; цветные карандаши; линейки.

    Ход урока

    I . Организация начала урока

    Слайд.

    Здравствуйте ребята, садитесь.

    Сегодня на уроке мы будем выполнять много творческих и занимательных заданий. Итак, внимание на экран!

    II. Сообщение темы, цели и задач урока

    Тема нашего урока «Симметрия в математике и окружающем нас мире».

    Сегодня на уроке мы познакомимся с понятием симметрии, научимся строить точки симметричные относительно прямой; будем решать задачи на построение симметрии геометрических фигур.

    При выполнении заданий мы будем оценивать работу. По моему указанию за каждое верно выполненное задание вы закрасите один из кружков, находящихся в верхней части Листа 1 (приложение).

    III. Усвоение новых знаний

    Слайд.

    Начнем с того, что выясним, что определим термин «симметрия».

    Как вы думаете, что означает слово «симметрия»?

    Где мы можем встретиться с симметрией в жизни?

    Обобщу ваши ответы. Симметрия (от греч. Symmetria – соразмерность), в широком смысле – неизменность структуры материального объекта относительно его преобразований.

    Симметрия играет огромную роль в искусстве и архитектуре. Но ее можно заметить и в музыке, и в поэзии.

    Симметрия широко встречается в природе, в особенности у кристаллов, у растений и животных. Симметрия может встретиться не только в геометрии, но и в других разделах математики, например в алгебре - при построении графиков функций.

    Симметрия бывает двух видов: осевая и центральная. Заполним схему в раздаточном материале Листа 1.

    Мы сегодня рассмотрим только осевую симметрию.

    Найдите предложение, в котором говорится, какие две точки называются симметричными.

    ОПР: Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА1 и перпендикулярно к нему.

    Проанализируем определение. Какие условия должны выполняться, что бы можно было однозначно сказать, что точка А симметрична точке А1 относительно прямой а? ( АА 1 ⊥ а и АО=ОА 1)

    Запишем более языком геометрии в скобках условие симметричности точек А и А 1 .

    Научимся строить вместе точку симметричную данной относительно прямой. Для этого найдем в раздаточном материале Задание 1 . Возьмем в руки угольник и карандаш. (учитель строит на доске)

    Этапы решения задачи: (на экране)

    • Построить перпендикуляр из точки А к прямой а;
    • О – точка пересечения перпендикуляра и прямой а;
    • Продлить перпендикуляр за прямую а;
    • Отложить на продолжении перпендикуляра отрезок равный отрезку ОА;
    • АО=ОА 1
    • Точки А и А 1 – симметричны относительно прямой а.

    Выполним устно задание: Какие точки на рисунках являются симметричными?

    Ответ: Только рисунок 2.

    Кто готов объяснить?

    Кто согласен с ответом поднимите руки? Закрась один кружок в верхней части Листа 1 .

    Осевой симметрией обладают и многие фигуры.

    ОПР: Фигура называется симметричной относительно прямой a , если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре.

    VI I. Закрепление знаний

    Рассмотрим геометрические фигуры и определим, имеют или не имеют они осевую симметрию.

    Работаем с заданием 2 Лист2 .

    - Задача2: На изображенных геометрических фигурах начертить все оси симметрии и записать, сколько их в столбце «Количество осей».

    Вы можете посоветоваться соседом по парте.

    Фигура

    Количество осей симметрии

    Учебная деятельность

    Неразвернутый угол

    1 ось симметрии -

    Ученик у доски
    биссектриса угла

    Равнобедренный треугольник

    1 ось симметрии - биссектриса, медиана, высота

    Учитель:
    По определению у равнобедренного треугольника равны боковые стороны; по свойству равнобедренного треугольника биссектриса, проведенная из вершины угла является медианой и высотой, значит ось симметрии совпадает с медианой, биссектрисой и высотой треугольника. Других осей симметрии нет

    4 оси симметрии

    Самостоятельно
    (2 оси – диагонали;
    2 оси – прямые, проходящие через середины сторон)

    Окружность

    осей симметрии бесконечное множество

    Самостоятельно
    Прямые, проходящие через центр окружности

    Итак, проверим решение задачи по экрану, исправим неточности при решении задачи.

    Поднимите руки, кто начертил все оси квадрата? Закрасили один кружок.

    Поднимите руки кто, верно, определил оси окружности? Закрасили один кружок.

    Как вы думаете, все ли геометрические фигуры имеют оси симметрии? Верно, не все. Давайте посмотрим на экран.

    Отложили ручки, устно решим задачу : Сколько осей имеет: отрезок; прямая; луч?

    Давайте рассуждать. Каждый случай разбираем последовательно.

    Кто готов ответить?

    Кто согласен подняли руки. Закрась один из кружков.

    Гимнастика для глаз 1 мин.

    - Наши глаза устали от напряженной работы. Дадим им возможность немного отдохнуть, выполнив несколько упражнений для глаз.

    VIII. Обобщение и систематизация

    А теперь решим две практические задачи, используя лист «материалы к уроку».

    Задача 3: Построить отрезок, симметричный данному.

    Проанализируем условие задачи: Как построить отрезок симметричный данному относительно прямой?

    Что такое отрезок? (Часть прямой, ограниченная с двух сторон. )

    Что достаточно построить для решения задачи? (Симметрию точек, являющихся концами отрезка. )

    Вывод: Так как отрезок ограничен двумя точками, достаточно построить точки симметричные точкам А и В относительно прямой с и соединить их.

    Работаем самостоятельно, один человек у доски.

    X. Подведение итогов урока

    С каким понятием мы познакомились сегодня на уроке? (Симметрия. )

    Какой вид симметрии мы рассмотрели? (Осевая. )

    Чему вы научились на уроке? (Строить точку симметричную относительно данной прямой; строить ось симметрии геометрических фигур; строить фигуру симметричную данной относительно данной прямой. )

    А теперь каждый посчитайте закрашенные кружки.

    Поднимите руки у кого закрашенных кружков оказалось ровно 4 или 5? Поставьте рядом с кружками отметку «5».

    Поднимите руки у кого закрашенных кружков оказалось ровно 3? Поставьте рядом с кружками отметку «4».

    Кто получил меньше кружков не расстраивайтесь – вы просто не сразу смогли найти ответ на поставленный вопрос.

    В заключение отметить, что симметрию можно обнаружить почти везде, если знать, как ее искать. Многие народы с древнейших времен владели представлением о симметрии в широком смысле – как об уравновешенности и гармонии. Творчество людей во всех своих проявлениях тяготеет к симметрии. Посредством симметрии человек всегда пытался, по словам немецкого математика Германа Вейля, «постичь и создать порядок, красоту и совершенство».

    Спасибо за активную работу.

    Районная научно-исследовательская конференция «Юниор»

    Исследовательская работа

    Симметрия в окружающем мире

    (секция точных наук)

    Выполнила: Меризанова Анна,

    Елисеенко Вера,

    ученица 8 класса

    Руководитель: Колесникова

    Людмила Александровна,

    учитель математики

    Введение. . 2

    1.1. ..................................................... . 3

    1.2. ................................................................... . 4

    1.3. Симметрия сквозь века . 7

    Глава 2. Симметрия вокруг нас. 8

    .. 8

    2.2. .......................................................... . 9

    Заключение . 11

    Библиографический список . 12

    Введение

    В этом учебном году рассматривали данную тему на уроках математики. Нас заинтересовала тема «Симметрия». И мы решили создать проект по этой теме, т. к. в учебнике по геометрии мало уделено внимания на изучение темы «Симметрия», при этом ученики часто задают вопрос: зачем она нужна, где она встречается, зачем её вообще изучают.

    А ведь симметрия встречается в природе, и в науке, и в искусстве – во всем обнаруживается единство и противоборство симметрии.

    Симметрия, свойственна разным явлениям, лежащим в основе всех вещей, она описывает многие явления жизни и многих наук

    В результате работы перед собой мы поставили вопросы:


    Для чего надо знать симметрию, где в окружающем мире она встречается?

    Мы поставили перед собой цель:

    сформировать представлений о симметрии, через систематизацию знаний о симметрии, а также через анализ явлений природы, человеческой деятельности.

    Для раскрытия темы нашей исследовательской работы были поставлены следующие задачи:

    Научиться распознавать симметричные фигуры среди других.

    Познакомиться с использованием симметрии в природе, быту, искусстве, технике.

    Продемонстрировать разнообразное применение математики в реальной жизни.

    Осознать степень своего интереса к предмету и оценить возможности овладения им с точки зрения дальнейшей перспективы (показать возможности применения полученных знаний в своей будущей профессии художника, архитектора, биолога, инженера-строителя).

    Для написание работы мной были использованы различные методы:

    2) метод индуктивного обобщения, конкретизации;

    3) использование компьютерного инвентаря.

    Глава 1. Первые представления о симметрии

    В данной главе нами описаны первые представления о симметрии, исторические сведения по данной теме; приведены некоторые примеры симметричных фигур; рассмотрены примеры исследовательского характера по теме:: «Симметрия».

    1.1. Историческое развитие и осмысление понятия симметрии

    В процессе исторического развития и осмысления симметрии особый этап симметрии как меры красоты и гармонии связани с работой выдающегося математика Германа Вейля «Симметрия» (1952). Г. Вейль под симметрией понимал неизмеримость (инвариантность) какого-либо объекта при преобразованиях: предмет является симметричным в том случае, когда его подвергнуть какой-нибудь операции, после которой он будет выглядеть так же, как и до преобразования.

    Греческое слово «симметрия» означает «соразмерность», «пропорциональность», «одинаковость в расположении частей». Однако часто под словом «симметрия» понимают более широкое понятие: регулярность смены каких-либо явлений (времен года, дня и ночи и т. д.), уравновешенность левого и правого, равноправие природных явлений. Фактически мы имеем дело с симметрией везде, где наблюдается какая-либо упорядоченность. В психологии и морали широко использовалось понятие симметрии. Так, великий Аристотель считал, что симметрия имеет смысл некой средней меры, к которой должен стремиться в своих действиях добродетельной человек. Римский врач Гален (2в. н. э.) под симметрией понимал состояние духа, одинаково удаленное от обеих крайностей, например от горя и радости, апатии и возбуждения. Симметрия, понимаемая как покой, уравновешенность, противостоит хаосу и беспорядку. Об этом говорит гравюра Мариуса Эшера «Порядок и Хаос» (рис. 196), где, как писал сам художник, «звездчатый додекаэдр, символ красоты и порядка, окружен прозрачной сферой. В ней отражена бессмысленная коллекция бесполезных вещей».

    1.2. Математическое представление о симметрии

    Представления о симметрии, изложенные выше, носят общий характер и для математики не являются точными и строгими.

    Определение 1. Симметрия это соразмерность, одинаковость в расположении частей чего-нибудь по противоположным сторонам от точки, прямой или плоскости.

    Математическое строгое определение симметрии сформировалось сравнительно недавно – в 19 в., когда были введены понятия зеркальной и поворотной симметрии.


    Розетки, снежинки – это симметричные и очень красивые фигуры.

    В планиметрии существует осевая (симметрия относительно прямой), центральная симметрии (симметрия относительна точки), а также поворотная, зеркальная, переносная.

    Определение 2. Две точки A и A1 называются симметричными относительно прямой а , если эта прямая проходит через середину отрезка АА1 и перпендикулярна к нему.

    Каждая точка прямой а

    Определение 2 . Фигура называется симметричной относительно прямой а , если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры. Говорят, фигура обладает осевой симметрией . Фигуры, которые имеют ось симметрии: прямоугольник, ромб, квадрат, равносторонний треугольник, равнобедренный треугольник, круг и т. д.

    Определение 3. Две точки А и А1 называются симметричными относительно точки О , если О – середина отрезка АА1 . Точка О считается симметричной самой себе.

    Определение 4. Фигура называется симметричной относительно точки О , если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О , называется центром симметрии фигуры . Говорят, фигура обладает центральной симметрией . Примеры фигур, которые обладают центральной симметрией: круг, параллелограмм, треугольник и т. д.

    Математика изучает немало фигур, которые обладают и осевой, и центральной симметрией (круг, квадрат и др.), только осевой симметрией (например, равнобедренный треугольник), только центральной симметрией (например, параллелограмм общего вида).

    Чтобы разобраться в данной теме мы произвели ряд исследовательских заданий.

    Исследовательские задания.

    Задание 1. На прямой АВ найдите точку, сумма расстояний от которой до двух данных точек М и N была бы наименьшей.

    Обсуждение. 1 случай. Пусть М и N лежат по разные стороны от , кратчайшее расстояние между ними есть , следовательно, искомая точка Х лежит на пересечении и https://pandia.ru/text/79/046/images/image024_13.jpg" align="left hspace=12" width="187" height="132">Всякая другая точка прямой АВ не обладает этим свойством, так как .gif" width="36" height="23"> Строим М1 , симметричную М относительно https://pandia.ru/text/79/046/images/image023_17.gif" width="36 height=27" height="27">.gif" width="36" height="23 src=">, то искомая точка Х есть точка пересечения прямых М N и AB .

    Задание 2. Даны прямые АВ и точки М и N . Найдите на https://pandia.ru/text/79/046/images/image028_8.jpg" align="left hspace=12" width="207" height="140">Обсуждение. 1 случай. Точки М и N лежат по одну сторону от прямой АВ (и притом на разных расстояниях от неё. Тогда точка Х прямой АВ, для которой разность расстояний от точек М и N наибольшая, есть точка пересечения прямой АВ с продолжением отрезка MN. Тогда всякая другая точка Х1 прямой АВ не обладает этим свойством, так как (следствие аксиомы треугольника). Если М и N находится на одинаковом расстоянии от https://pandia.ru/text/79/046/images/image031_8.jpg" align="left hspace=12" width="207" height="148">2 случай. Точки М и N лежат по разные стороны от . Тогда искомая точка , где .

    Если точки М и N находятся по разные стороны от и на одинаковом от неё расстоянии, то задача не имеет решений.

    Задание 3 . Исследовать имеют ли центр симметрии: 1) отрезок; 2) луч; 3) квадрат.

    Обсуждение. 1) да; 2)нет; 3 да

    Задание 4. Исследовать какие из следующих точек латинского алфавита имеют центр симметрии: А, О, M, Х.

    Обсуждение. О и Х

    Обсуждение. 1) две; 2) «бесконечное множество»: любая прямая, перпендикулярная к данной, а также сама прямая; 3) одну.

    Задание 6. Исследовать какие из следующих букв имеют ось симметрии: А, Б, г, Е, О в алфавите.

    Обсуждение. А, Е, О

    Вывод: Данные примеры нам показывают, что даже точки стоящие в алфавите имеют симметричное положение. Ось симметрии имеют различные геометрические фигуры.

    1.3. Симметрия древнерусского орнамента

    Для русского орнамента характерны как растительные и геометрические формы, так и изображения птиц, зверей и фантастических животных. Особенно ярко русский орнамент выражен в резьбе по дереву и вышивке. Наиболее часто использовались так называемые плетенки – переплетения лент, ремней, стеблей цветов. В 17 в. зодчий Степан Иванов создал свой знаменитый орнамент «Павлинье око».

    По мнению академика, известного археолога и историка с мировым именем, в основу древнерусского орнамента вошли универсальные различные представления о мире. Сознание древнего славянина было обусловлено мифологическими восприятиями действительности. Всё это отражалось в мотивах, характерных для русского орнамента.

    · Мотив «обереговых» знаков , которые наносились на одежду, предметы быта и различные детали жилища..jpg" width="300" height="239 src=">

    · Мотив плетёнки , характерный для русальских браслетов, который трактовали как знак воды и царства подземного владыки Переплута.

    · Мотив древней богини Мокоши как специфического воплощения представления о Великой Праматери, общего для всех народов на определённой стадии исторического существования. Мокоша (Макошь) – единственный женский образ в древнерусской мифологии. Её имя наводит на мысль о мокроте, влаге, воде. Мокошь покровительствовала всем женским занятиям, особенно прядению, и почитали её преимущественно женщины.

    https://pandia.ru/text/79/046/images/image041_6.jpg" width="324" height="211">

    В русском орнаменте с древних времён сложилась особая система расположения символов, представляемых движение Солнца вокруг Земли. Встречается несколько типов солнечных знаков, для них характерна поворотная симметрия. Наиболее распространён круг, разделённый радиусами на разные секторы («Колесо Юпитера»), а также круг с крестом внутри.

    Вывод: проанализировав литературу по данному вопросу мы пришли к выводу, что в древнерусском орнаменте часто встречаются симметричные символы. В традиционных национальных украшениях и предметах быта можно встретить все виды симметрии на плоскости: центральную, осевую, поворотную, переносную.

    1.4. Симметрия сквозь века

    В своих размышлениях над картиной мира человек с давних пор активно использовал идею симметрии. По преданию, термин «симметрия» придумал скульптор Пифагор Регийский, живший в г. Регул. Отклонение от симметрии он определил термином «асимметрия». Древние греки полагали, что Вселенная симметрична просто потому, что она прекрасна. Считая сферу наиболее симметричной и совершенной формой, они делали вывод о сферичности Земли и ее движения по сфере вокруг некоего «центрального огня», где двигались также 6 известных тогда планет вместе с луной, Солнцем, звездами.

    Представители первой научной школы в истории человечества, последователи Пифагора Самооского, пытались связать симметрию с числом.

    Широко используя идею гармонии и симметрии, ученые древности любили обращаться не только к сферическим формам, но и к правильным многогранникам, для построения которых они использовали «золотое отношение». У правильных многогранников грани – правильные многоугольники одного вида, а углы между гранями равны. Древние греки установили поразительный факт: существует всего пять правильных выпуклых многогранников, названия которых связаны с числом граней, - тетраэдр, октаэдр, икосаэдр, куб, додекаэдр.

    Глава 2. Симметрия вокруг нас

    В данной главе описана теория в которой указывается различные представления симметрии в природе, в этой главе мы доказываем, что строения, созданные человеком также имеют симметричные фигуры.

    2.1. Роль симметрии в познании природы

    Симметрия кристаллов является следствием их внутреннего строения: их атомы и молекулы имеют упорядоченное взаимное расположение, образуя симметричную решетку из атомов – так называемую кристаллическую решетку.

    Недостающие элементы симметрии определил академик Аксель Вильгельмович Гадолин (). Известный профессор минералогии из немецкого города Марбурга Иоганн Гессель в 1830г. Опубликовал свой труд о симметрии кристаллов. Его труд по некоторым причинам остался незамеченным. Но в 1897г. Работу Гесселя переиздали, и с тех пор его имя вошло в историю науки.

    Итак, симметрию кристаллов научились изучать и сравнивать. Существуют 9 элементов симметрии и только 32 различных набора элементов симметрии – групп симметрии, которые и определяют внешнюю форму кристаллов. Но коль скоро число элементов симметрии кристаллов, конечно, то конечно число их наборов – комбинации, описывающих симметрию внешней формы. Отсюда следует, что симметрия – строгий и всеобъемлющий закон, управляющий царством кристаллов. Она задаёт форму кристалла, число его граней и ребер, она же диктует и его внутреннее строение.

    Симметрию можно обнаружить у обитателей моря, например у морской звезды, морского ежа и некоторых медуз.

    Ярко выраженной симметрией обладают листья, ветви, цветы и плоды растений. Для некоторых из них характерна только зеркальная симметрия, или только поворотная симметрия, скользящая.

    Интересно, что среди растений одного вида существуют такие, у которых встречается как левая структура листьев, так и правая.

    Живая природа характеризуется не только известными видами симметрии. Так, изогнутый стебель растения, закрученная форма моллюска не менее симметричны, чем кристалл. Но это другая симметрия – криволинейная, которая была обнаружена в 1926г.

    А в 1960г. Академик ввел в рассмотрение симметрию подобия. Подобными фигурами считаются одной и той же формы. Симметрия подобия состоит из переноса (поворота) фигуры с одновременным уменьшением или увеличением ее размеров.

    2.2. Симметрия в архитектурных сооружениях

    Симметрия господствует не только в природе, но и в творчестве человека. Прекрасные образцы симметрии демонстрируют произведения архитектуры. Интересны древнерусские постройки, в частности деревянные церкви. Стройные и выразительные, рубленные восьмериком, т. е. с симметричными восьмигранными шатрами, они как нельзя лучше соответствовали понятию красоты в средневековой Руси.

    Примером может служить храм Василия Блаженного на Красной площади в Москве. Храм состоит из десяти различных храмов, каждый из которых строго симметричен, но в целом он не обладает ни зеркальной, ни поворотной симметрией.

    Можно привести много примеров использования симметрии и асимметрии в скульптуре. Например, скульптура пелопонесского мастера из школы Пифагора «Дельфийский возничий», которая изображает победителя на состязаниях конных колесниц. Фигура юноши в длинном хитоне в целом симметрична, но легкий поворот торса и головы нарушает зеркальную симметрию, что порождает иллюзию движения, и статуя кажется живой.

    Луи Пастер считал, что именно асимметрия отличает живое от неживого, полагая, что симметрия – страж покоя, а асимметрия – двигатель жизни. Пример того, что парадокс симметрии служит не только для передачи движения, но и для усиления впечатления, - это изображение греческой вазы из пещеры Камарес на острове Крит.

    Заключение

    Симметрия – это нечто общее, свойственное разным явлениям, лежащее в основе всех вещей, а асимметрия выражает некие индивидуальные особенности вещей и явлений. И в природе, и в науке, и в искусстве – во всем обнаруживается единство и противоборство симметрии и асимметрии. Мир существует благодаря единству этих двух противоположностей.

    Проанализировав работу, мы пришли к выводу, что симметрия часто встречается в искусстве, архитектуре, технике, быту. Так, фасады многих зданий обладают осевой симметрией. В большинстве случаев симметричны относительно оси или центра узоры на коврах, тканях, комнатных обоях. Симметричны многие детали механизмов, например зубчатые колёса.

    В результате реализации проекта:

    u расширили знания о симметрии;

    u узнали, какие явления из жизни и

    некоторых наук описывает симметрия;

    u новые практические приемы : работа с учебной, научно-познавательной литературой;

    u обобщили понятия, представления, знания, на получение которых нацелен результат проекта : рассмотрели, где в жизни встречается симметрия.

    Библиографический список

    1. Н, Мифология Древней Руси. – М.: Эксмо, 2006.

    2. Симметрия. – Изд. 2-е, стер. – М.: Единториал УРСС, 2003.

    3. Гнеденго по истории математики в России. – 2-е изд., испр. и дополн. – М.: КомКнига, 2005.

    4. Изобразительные мотивы в русской народной вышивке. Музей народного искусства. – М.: Советская Россия,1990.

    5. Климова орнамент в композиции художественных изделий. – м.: Изобразительное искусство,1993.

    «Симметрия в геометрии» - Применение симметрии в различных областях науки и техники. Нахождение координаты точки. Фигуры, обладающие осевой симметрией. ЦЕНТРАЛЬНАЯ СИММЕТРИЯ - симметрия относительно точки, которая задается следующим образом: Поворотная. Вот центр, вот ось. Осевая и центральная симметрия в растительном мире. Винтовая.

    «Зеркальная симметрия» - Зеркальная симметрия. Плоскость симметрии. Самые симметричные фигуры. Очень известные, но иногда загадочные. Построение изображения с помощью зеркальной симметрии сходно с отражением в зеркале. Зеркальная симметрия – симметрия относительно плоскости.

    «Симметрия в мире» - Однако наиболее распространена поворотная симметрия 5-го порядка. Почему симметрия пронизывает весь окружающий нас мир? Осевая симметрия хорошо видна у бабочек. Веточки деревьев могут обладать скользящей осью симметрии. Симметрия в неживой природе. В природе красивое всегда целесообразно, а целесообразное – всегда красиво.

    «Симметрия в природе» - На явление симметрии в живой природе обратили внимание ещё в Древней Греции. Осевая симметрия в жизни и природе встречается довольно часто. Осевая Центральная. Рассмотрим два вида симметрии. Греческое слово симметрия буквально обозначает «соразмерность». Учение о различных видах симметрии представляет большую и важную ветвь геометрии, тесно связанную со многими отраслями естествознания и техники, начиная от текстильного производства и кончая тонкими вопросами строения вещества.

    «Симметрия в архитектуре» - Здесь мы увидели такие виды симметрии: Где же еще, как ни здесь, мог поселиться Дед Мороз? Каждая колонна – поворотная симметрия! На фото: ансамбль Соборное Дворище ночью. Рим, Акрополь. Триумфальные ворота в Петербурге в честь победы русского оружия. Не правда ли – нисколько не хуже заграницы! Страны и города.

    «Осевая симметрия» - Симметрия в древней и современной архитектуре. Симметрия в природе. Буквы русского языка тоже можно рассмотреть с точки зрения симметрии. А роза упала на лапу Азора. Симметричны ли фигуры относительно прямой? Симметричный обман. Симметрия простейших фигур. Написаны тысячи таких предложений. В узорах знаменитых павловопосадских платков сочетание повторяющихся элементов.

    Всего в теме 32 презентации

    Игнатовская Елена, Дорохов Анатолий

    Осмотритесь вокруг! Мы восхищаемся ярким цветком, красивой бабочкой, загадочной снежинкой, высокими деревьями, куполами церквей, прекрасными скульптурами и стройными спортсменами. Что лежит в основе этой красоты? Симметрия приятна для глаза и часто ассоциируется с прекрасным. «Симметрия является той идеей, посредством которой человек пытался постичь и создать порядок, красоту и совершенство», - писал известный ученый Г.Вейль. Многие процессы, происходящие в мире, можно рассматривать с помощью математической модели. Изучив математические основы понятия симметрия мы научимся видеть красоту мира и создавать ее своими руками!

    Метод проектов позволяет школьникам перейти от усвоения готовых знаний к их осознанному приобретению.

    Данный проект подготовлен учениками 8 класса при изучении темы «Осевая и центральная симметрия». Его целью является формирование понятия о симметрии, умения видеть явления симметрии в окружающем мире, расширение представления о сферах применения математики и ее связь с другими предметами. Помимо основных целей, мы преследовали еще одну: прикосновение к прекрасному, к различным видам искусства.

    Защита проекта состоялась на школьной научно-практической конференции « Математика в современном мире», используется учителем на уроках математики при изучении темы « Осевая и центральная симметрия».

    Скачать:

    Предварительный просмотр:

    Окружающий нас мир – это мир симметрии

    Игнатовская Елена, Дорохов Анатолий ученики 8 «Б» класса, Сигодина Лариса Владимировна,

    учитель математики

    МБОУ «Благовещенская средняя образовательная школа №1»

    Слайд 1

    Понятие симметрии проходит через всю многовековую историю человеческого творчества. Многие народы с древних времен владели представлением о симметрии в широком смысле – как эквиваленте уравновешенности и гармонии. Формы восприятия и выражения во многих областях науки и искусства, в конечном счете, опираются на симметрию, используемую и проявляющуюся в специфических понятиях и средствах, присущих отдельным областям науки и видам искусства. Сегодня мы предлагаем вам рассмотреть проявление этой идеи в различных областях.

    Слайд 2

    Симметрия (от греческого «соразмерность») – это свойство геометрического объекта совмещаться с собой при некоторых преобразованиях, образующих группу.

    Идея симметрии часто является отправным пунктом в гипотезах и теориях ученых прошлых веков, веривших в математическую гармонию мироздания и видевших в этой гармонии проявление божественного начала. Древние греки считали, что вселенная симметрична просто потому, что симметрия прекрасна.

    Слайд 3

    Основными видами симметрии являются осевая, центральная и зеркальная.

    Слайд 4

    Две точки Аи А 1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к нему.

    Слайд 5

    Центральная симметрия.

    Две точки А и А 1 называются симметричными относительно точки О, если О – середина отрезка АА 1.

    Слайд 6

    Если преобразование симметрии относительно плоскости переводит фигуру (тело) в себя, то фигура называется симметричной относительно плоскости, а данная плоскость – плоскостью симметрии этой фигуры. В некоторых источниках такую симметрию называют зеркальной.

    Слайд 7

    Посмотрите на кленовый лист, снежинку, бабочку. Их объединяет то, что они симметричны. Вот на ваш рукав упал с дерева обыкновенный лист. Форма его не является случайной, она строго закономерна. Листок, как бы склеен из двух одинаковых половинок, одна из этих половинок расположена зеркально относительно другой. Лист обладает зеркальной симметрией, но он обладает и осевой симметрией.

    Слайд 8

    О, симметрия! Гимн тебе пою!

    Тебя повсюду в мире узнаю.

    Ты в Эйфелевой башне, в малой мошке.

    Ты в елочке, что у лесной дорожки.

    С тобою в дружбе и тюльпан и роза, и снежный рой – творение мороза!

    Слайд 9

    Оглянувшись вокруг, мы можем заметить симметрию.

    Слайд 10

    Рассмотрим примеры геометрических фигур, обладающих симметрией.

    Осевой симметрией обладают равнобедренный треугольник, прямоугольник, квадрат, окружность, равносторонний треугольник.

    Слайд 11

    Центральную симметрию можно увидеть у параллелограмма, окружности, квадрата, прямоугольника.

    Слайд 12 Симметрия в алгебре.

    Осевой симметрией обладает парабола, центральной - кубическая парабола.

    Слайд 13

    На явления симметрии в живой природе обратили внимание еще в Древней Греции пифагорейцы в связи с развитием учения о гармонии (V века до н. э.). В XIX веке появились единичные работы, посвященные симметрии в растительном и животном мире.

    Тело человека построено по принципу двусторонней симметрии. Большинство из нас

    рассматривает мозг как единую структуру, в действительности он разделен на две половины. Эти две части – два полушария – плотно прилегают друг к другу. В полном соответствии с общей симметрией тела человека каждое полушарие представляет собой почти точное зеркальное отображение другого.

    Слайд 14

    Вертикальная ориентация оси корпуса характеризует симметрию дерева. Ярко выраженной симметрией обладают листья, цветы, ветви, плоды.

    Слайд 15

    Симметрия широко встречается в природе, в особенности у растений, например, симметрия цветка. Цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. Цветки, имея парные части, считаются цветками с двойной симметрией и т.д. Тройная симметрия обычна для однодольных растений, пятерная – для двудольных.

    Слайд 16

    Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии.

    Сферическая симметрия имеет место у радиолярий и солнечников, тела которых сферической формы, а части распределены вокруг центра сферы и отходят от нее. У таких организмов нет ни передней, ни задней, ни боковых частей тела, любая плоскость, проведенная через центр, делит животное на одинаковые половинки.

    При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Это кишечнополостные, иглокожие, морские звезды.

    При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны – брюшная и спинная – друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих.

    Слайд 17

    Принципы симметрии являются в физики инструментом для отыскания новых законов природы. К числу симметричных принципов относится принцип относительности Галилея и Эйнштейна.

    Слайд 18- 19 Симметрия в химии.

    Симметрия обнаруживается на атомном уровне изучения вещества. Она проявляется в недоступных непосредственному наблюдению геометрически упорядоченных атомных структурах молекул.

    В 1810 году Д. Дальтон, желая показать своим слушателям как атомы, комбинируясь образуют химические соединения, построил деревянные модели шаров и стержней. Эти модели оказались превосходным наглядным пособием.

    Молекула воды имеет плоскость симметрии. Ничто не изменится, если поменять местами парные атомы в молекуле; такой обмен эквивалентен операции зеркального отражения. Все твердые тела являются кристаллами, а кристаллы обладают симметрией.

    На рисунке вы видите кристаллы топаза, берилла, дымчатого кварца.

    Симметрия внешней формы хорошо видна на рисунке. Кристаллы каменной соли, кварца, арагонита.

    Слайд 20-23

    Каждая снежинка – это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией. У настоящих природных снежинок всегда шесть осей симметрии.

    Слайд 24-26

    Симметрия играет огромную роль в искусстве, особенно ясную в орнаментах и архитектуре.

    Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого развития. Издавна человек использовал симметрию в архитектуре. Древним храмам, башням средневековых замков, современным зданиям она придает гармоничность, законченность. Например, здание Большого театра в Москве. Именно с симметрией связана красота этого здания. Также примером, может служить собор Василия Блаженного на Красной площади в Москве. Это композиция из десяти различных храмов, каждый храм геометрически симметричен. Однако собор как целое не обладает ни зеркальной, ни осевой симметрией.

    Слайд 27

    Поразительные по красоте примеры симметрии дают кружева.

    Слайд 28

    Симметрия использовалась разными народами для крашения предметов быта и культуры.

    Слайд 29

    Периодически повторяющийся рисунок на длинной ленте называется орнаментом. На практике орнаменты встречаются в различных видах: настенная роспись, чугунное литье, гипсовые барельефы или керамика. Орнаменты применяют маляры и художники при оформление комнаты. Долгие века люди верили в охранную силу орнамента, считали, что он оберегает от бед и приносит счастье, благополучие. Постепенно функция оберега была утрачена, но сохранилась его основная задача – сделать предмет более нарядным и привлекательным, художественно выразительным.

    Слайд 30

    Орнаменты покрывали стены и в древности, вы видите древнеегипетский орнамент. Красивы орнаменты, созданные современным известным голландским художником Эшером. Голландский художник Морис Эшер в своих оригинальных, ни на что не похожих картинах – головоломках с необыкновенной изобретательностью использует эффекты симметрии. Не правда ли, плотно сплетенные друг с другом изображения белых, красных и черных ящериц, которые заполняют без остатка всю плоскость картины, воспринимаются как своеобразный гимн всепроникающей симметрии.

    Слайд 31

    Зеркальную симметрию также называют геральдической, так как ее можно увидеть в гербах разных стран. Двуглавый орел хорошо послужил государству Российскому, как символ объединенных русских земель вокруг богатого города и умного, волевого лидера. В 1997 году отмечался полутысячилетний юбилей Российского герба. За 5 веков исторической судьбы России многократно менялись, но государственный герб нашей страны – ее изобразительное имя неизменно служили Родине, и остаются ее главным символом в наши дни.

    Слайд 32

    Некоторые буквы обладают симметрией. Например, буква А. М, Т, Ш, П имеют вертикальную ось симметрии. Буквы В, З, К, С, Э, Е имеют горизонтальную симметрию.

    А буква Ж, Н, О, Ф, Х имеют по обе оси симметрии. Симметрию можно увидеть и в словах: радар, заказ, казак, шалаш. Такие слова, читающиеся одинаково в обоих направлениях, называются палиндромами. Есть и целые фразы с таким свойством (если не учитывать пробелы между словами): «Искать такси», « Аргентина манит негра»,

    «Ценит негра аргентинец», «Леша на полке клопа нашел». Ими увлекались многие поэты.

    Слайд 33 Симметрия в музыке.

    Душа музыки, ритм, состоит в правильном периодическом повторении частей музыкального произведения. Правильное повторение одинаковых частей в целом и составляет сущность музыки. Мы с большим правом можем приложить к музыкальному произведению понятие симметрии, что это произведение записывается при помощи нот. Самое непосредственное отношение имеет к симметрии композиция. Великий немецкий поэт И. В. Гете утверждал, что всякая композиция основана на скрытой симметрии. Владеть законами композиции – это значит владеть законами симметрии.

    Слайд 34

    Действительно симметричные объекты окружают нас буквально со всех сторон. Мы имеем дело с симметрией везде, где наблюдается какая- либо упорядоченность. Симметрия противостоит хаосу, беспорядку. Получается, что симметрия это уравновешенность, упорядоченность, красота, совершенство.

    Симметрия многообразна, вездесуща. Она создает красоту и гармонию.

    Литература:

    1. Виленкин Н.Я. За страницами учебника математики. Арифметика. Алгебра. Геометрия. Книга для учащихся 10 – 11 классов общеобразовательных учреждений: - М:Просвещение, 1996.

    2. Пойа Д. Математическое открытие.- М.:Наука, 1970

    3. Баткин Л. М. Леонардо да Винчи и особенности ренесанского творческого мышления. – М. : Искусство, 1990

    4. Гутков А. Мир архитектуры: Язык архитектуры. –М.: Мол. Гвардия, 1985

    5. Н.В. Корнева, Ю.Е. Новоселова, Е.С. Тимакина Интегрированный урок 9-го класса