Примеры осевой и центральной симметрии. Центральная симметрия

, Конкурс «Презентация к уроку»

Презентация к уроку
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели и задачи:

  • совершенствование знаний об осевой симметрии;
  • познакомить с понятием центральная симметрия;
  • научить распознавать фигуры, обладающие осевой симметрией и центральной симметрией;
  • совершенствование знаний и умений при работе с чертежно - измерительными инструментами;
  • развивать пространственное воображение, конструкторские навыки и творчество;
  • способствовать развитию интереса к техническому творчеству;
  • расширение кругозора.

Материалы и инструменты:

  • Компьютер учителя (ноутбук), мультимедийный проектор, экран; слайдовая презентация к занятию; циркуль для доски; циркули ученические, треугольники, цветной картон и бумага, ножницы, клей.

План занятия:

Организационная часть (подготовка к работе).

Актуализация опорных знаний.

Повторение геометрического материала.

Практическая работа, объяснение и показ основных методов выполнения работы, соревнования.

Подведение итогов занятия, обсуждение выполненной работы.

Уборка рабочих мест.

Ход занятия

Организационный момент. Проверка готовности к занятию.

Задание №1. "Разделите треугольник" Слайд 2

ОТВЕТ (рис.2):

рис. 2

Разделите представленный на рисунке равносторонний треугольник следующим образом:

1. Тремя линиями на четыре равные части.

2. Тремя линиями на шесть равных частей.

3. Тремя линиями на три равные части.

4. Одной линией на четыре произвольные части

Задание №2. Слайд 3

В квадрате 6 на 6 клеток нарисовать геометрический орнамент, через 2 два столбика клеток его повторить до конца листа.

В древности слово "СИММЕТРИЯ" употреблялось в значении "гармония", "красота". Действительно, в переводе с греческого это слово означает "соразмерность, пропорциональность, одинаковость в расположении частей".

С симметрией мы встречаемся везде - в природе, технике, искусстве, науке. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого развития. Издавна человек использовал симметрию в архитектуре. Древним храмам, башням средневековых замков, современным зданиям она придает гармоничность, законченность. Что же такое симметрия? Почему симметрия буквально пронизывает весь окружающий нас мир?

Мы рассмотрим ту симметрию, которую можно непосредственно видеть - симметрию положений, форм, структур. Она может быть названа геометрической симметрией.

ОСЕВАЯ СИММЕТРИЯ Слайд 4

Равнобедренный (но не равносторонний) треугольник имеет также одну линию симметрии. А равносторонний треугольник - три линии симметрии.

У неразвёрнутого угла одна линия симметрии - прямая, на которой расположена биссектриса угла.

Прямоугольник и ромб, не являющиеся квадратами имеют по две линии симметрии , а квадрат - четыре линии симметрии.

Выступление "Зеркальная (осевая) симметрия" Приложение № 1

Найдите фигуры, обладающие линией симметрии (Задание №1) Приложение № 2

ЦЕНТРАЛЬНАЯ СИММЕТРИЯ Слайд 8

Простейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм.

Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма - точка пересечения его диагоналей.

Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии у прямой их бесконечно много - любая точка прямой является её центром симметрии.

Примером фигуры, не имеющей центра симметрии, является треугольник.

Найдите фигуры, обладающие центральной симметрией (Задание №2) Приложение № 2

Найдите фигуры, имеющие обе оси симметрии (Задание №3) Приложение № 2

Выступление "Симметрия в буквах" Приложение № 3

Раз - руки вверх махнули
И при том вздохнули
Два - три нагнулись, пол достали
А четыре - прямо встали и сначала повторяем.
Воздух сильно мы вдыхаем
При наклонах выдох дружный
Но колени гнуть не нужно.
Чтобы руки не устали,
Мы на пояс их поставим.
Прыгаем как мячики
Девочки и мальчики.

Практическая работа "Летающая тарелка" Приложение № 5

На какое геометрическое тело похожа летающая тарелка? (цилиндр)

Каким инструментом мы будем пользоваться? (циркуль)

Правила техники безопасности при работе с циркулем.

Сейчас начинаем практическую работу (рис.10):

  1. Для изготовления летающей тарелки используем картон любого цвета.
  2. На изнаночной стороне картона чертим окружность R55 (1 деталь) и R36 (2 детали).
  3. По длине картона откладываем прямоугольник длиной 220 мм и шириной 12 мм (по длине отмечаем клапаны).
  4. Вырезаем все детали.
  5. Склеиваем детали №2 и №3, получился цилиндр.
  6. Приклеиваем цилиндр на деталь №1
  7. Получилась "Летающая тарелка".
  8. Оформление по собственному замыслу.
  9. Соревнования.
  10. Подведение итогов

Итог занятия

Сегодня на занятии мы с вами повторили и изучили осевую и центральную симметрии.

  • Сколько осей симметрии имеет отрезок, прямая? (по 2).
  • Имеют ли центр симметрии отрезок, прямая, квадрат? (по2)
  • Какие из данных букв имеют ось симметрии? (М, А, Н, Е)
  • Какие из данных букв имеют центр симметрии? (Н, О) Приложение № 6

Все правильно.

Сегодня все хорошо поработали и разобрались с симметрией, но если кто - то все-таки сомневается, я вам подготовила вот такую подсказку

Награждение и поздравление победителей соревнований.

Уборка рабочих мест.

Литература.

  1. Тарасов Л. Этот удивительный симметричный мир. М., 1982 г.
  2. Шарыгин И.Ф., Ерганжиева Л.Н. Наглядная геометрия. М., 1995 г.
  3. Интернет ресурсы.

(означает «соразмерность») — свойство геометрических объектов совмещаться с собой при определенных преобразованиях. Под «симметрией» понимают всякую правильность во внутреннем строении тела или фигуры.

Центральная симметрия — симметрия относительно точки.

относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры.

В одномерном пространстве (на прямой) центральная симметрия является зеркальной симметрией.

На плоскости (в 2-мерном пространстве) симметрия с центром А представляет собой поворот на 180 градусов с центром А. Центральная симметрия на плоскости, как и поворот, сохраняет ориентацию.

Центральную симметрию в трёхмерном пространстве называют также сферической симметрией. Её можно представить как композицию отражения относительно плоскости, проходящей через центр симметрии, с поворотом на 180° относительно прямой, проходящей через центр симметрии и перпендикулярной вышеупомянутой плоскости отражения.

В 4-мерном пространстве центральную симметрию можно представить как композицию двух поворотов на 180° вокруг двух взаимно перпендикулярных плоскостей, проходящих через центр симметрии.

Осевая симметрия — симметрия относительно прямой.

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры.

Осевая симметрия имеет два определения:

- Отражательная симметрия.

В математике осевая симметрия — вид движения (зеркального отражения), при котором множеством неподвижных точек является прямая, называемая осью симметрии. Например, плоская фигура прямоугольник в пространстве осимметрична и имеет 3 оси симметрии, если это не квадрат.

- Вращательная симметрия.

В естественных науках под осевой симметрией понимают вращательную симметриею, относительно поворотов вокруг прямой. При этом тела называют осесимметричными, если они переходят в себя при любом повороте вокруг этой прямой. В этом случае, прямоугольник не будет осесимметричным телом, но конус будет.

Изображения на плоскости многих предметов окружающего нас мира имеют ось симметрии или центр симметрии. Многие листья деревьев и лепестки цветов симметричны относительно среднего стебля.

С симметрией мы часто встречаемся в искусстве, архитектуре, технике, быту. Фасады многих зданий обладают осевой симметрией. В большинстве случаев симметричны относительно оси или центра узоры на коврах, тканях, комнатных обоях. Симметричны многие детали механизмов, например зубчатые колеса.

Понятие движения

Разберем сначала такое понятие как движение.

Определение 1

Отображение плоскости называется движением плоскости, если при этом отображении сохраняются расстояния.

Существуют несколько теорем, связанных с этим понятием.

Теорема 2

Треугольник, при движении, переходит в равный ему треугольник.

Теорема 3

Любая фигура, при движении, переходит в равную ей фигуру.

Осевая и центральная симметрия являются примерами движения. Рассмотрим их более подробно.

Осевая симметрия

Определение 2

Точки $A$ и $A_1$ называются симметричными относительно прямой $a$, если эта прямая перпендикулярна к отрезку ${AA}_1$ и проходит через его центр (рис. 1).

Рисунок 1.

Рассмотрим осевую симметрию на примере задачи.

Пример 1

Построить симметричный треугольник для данного треугольника относительно какой-либо его стороны.

Решение.

Пусть нам дан треугольник $ABC$. Будем строить его симметрию относительно стороны $BC$. Сторона $BC$ при осевой симметрии перейдет в саму себя (следует из определения). Точка $A$ перейдет в точку $A_1$ следующим образом: ${AA}_1\bot BC$, ${AH=HA}_1$. Треугольник $ABC$ перейдет в треугольник $A_1BC$ (Рис. 2).

Рисунок 2.

Определение 3

Фигура называется симметричной относительно прямой $a$, если каждая симметричная точка этой фигуры содержится на этой же фигуре (рис. 3).

Рисунок 3.

На рисунке $3$ изображен прямоугольник. Он обладает осевой симметрией относительно каждого своего диаметра, а также относительно двух прямых, которые проходят через центры противоположных сторон данного прямоугольника.

Центральная симметрия

Определение 4

Точки $X$ и $X_1$ называются симметричными относительно точки $O$, если точка $O$ является центром отрезка ${XX}_1$ (рис. 4).

Рисунок 4.

Рассмотрим центральную симметрию на примере задачи.

Пример 2

Построить симметричный треугольник для данного треугольника какой-либо его вершины.

Решение.

Пусть нам дан треугольник $ABC$. Будем строить его симметрию относительно вершины $A$. Вершина $A$ при центральной симметрии перейдет в саму себя (следует из определения). Точка $B$ перейдет в точку $B_1$ следующим образом ${BA=AB}_1$, а точка $C$ перейдет в точку $C_1$ следующим образом: ${CA=AC}_1$. Треугольник $ABC$ перейдет в треугольник ${AB}_1C_1$ (Рис. 5).

Рисунок 5.

Определение 5

Фигура является симметричной относительно точки $O$, если каждая симметричная точка этой фигуры содержится на этой же фигуре(рис. 6).

Рисунок 6.

На рисунке $6$ изображен параллелограмм. Он обладает центральной симметрией относительно точки пересечения его диагоналей.

Пример задачи.

Пример 3

Пусть нам дан отрезок $AB$. Построить его симметрию относительно прямой $l$, не пересекающий данный отрезок и относительно точки $C$, лежащей на прямой $l$.

Решение.

Изобразим схематически условие задачи.

Рисунок 7.

Изобразим для начала осевую симметрию относительно прямой $l$. Так как осевая симметрия является движением, то по теореме $1$, отрезок $AB$ отобразится на равный ему отрезок $A"B"$. Для его построение сделаем следующее: проведем через точки $A\ и\ B$ прямые $m\ и\ n$, перпендикулярно прямой $l$. Пусть $m\cap l=X,\ n\cap l=Y$. Далее проведем отрезки $A"X=AX$ и $B"Y=BY$.

Рисунок 8.

Изобразим теперь центральную симметрию относительно точки $C$. Так как центральная симметрия является движением, то по теореме $1$, отрезок $AB$ отобразится на равный ему отрезок $A""B""$. Для его построения сделаем следующее: проведем прямые $AC\ и\ BC$. Далее проведем отрезки $A^{""}C=AC$ и $B^{""}C=BC$.

Рисунок 9.

Научно-практическая конференция

МОУ «Средняя общеобразовательная школа № 23»

города Вологды

секция: естественно - научная

проектно-исследовательская работа

ВИДЫ СИММЕТРИИ

Выполнила работу ученица 8 «а» класса

Кренёва Маргарита

Руководитель: учитель математики высшей

2014 год

Структура проекта:

1. Введение.

2. Цели и задачи проекта.

3. Виды симметрии:

3.1. Центральная симметрия;

3.2. Осевая симметрия;

3.3. Зеркальная симметрия (симметрия относительно плоскости);

3.4. Поворотная симметрия;

3.5. Переносная симметрия.

4. Выводы.

Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство.

Г. Вейль

Введение.

Тема моей работы была выбрана после изучения раздела «Осевая и центральная симметрия» в курсе «Геометрия 8 класса». Меня очень заинтересовала эта тема. Я захотела узнать: какие виды симметрии существуют, чем они отличаются друг от друга, каковы принципы построения симметричных фигур в каждом из видов.

Цель работы : Знакомство с различными видами симметрии.

Задачи:

    Изучить литературу по данному вопросу.

    Обобщить и систематизировать изученный материал.

    Подготовить презентацию.

В древности слово «СИММЕТРИЯ» употреблялось в значении «гармония», «красота». В переводе с греческого это слово означает «соразмерность, пропорциональность, одинаковость в расположении частей чего-либо по противоположным сторонам от точки, прямой или плоскости.

Существуют две группы симметрий.

К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно видеть. Она может быть названа геометрической симметрией.

Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией.

Я остановлюсь на изучении геометрической симметрии .

В свою очередь, геометрической симметрии существует тоже несколько видов: центральная, осевая, зеркальная (симметрия относительно плоскости) радиальная (или поворотная), переносная и другие. Я рассмотрю сегодня 5 видов симметрии.

    Центральная симметрия

Две точки А и А 1 называются симметричными относительно точки О, если они лежат на прямой, проходящей через т О и находятся по разные стороны от неё на одинаковом расстоянии. Точка О называется центром симметрии.

Фигура называется симметричной относительно точки О , если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры, говорят, что фигура обладает центральной симметрией.

Примерами фигур, обладающими центральной симметрией является окружность и параллелограмм.

Фигуры, изображённые на слайде симметричны, относительно некоторой точки

2. Осевая симметрия

Две точки X и Y называются симметричными относительно прямой t , если эта прямая проходит чрез середину отрезка ХУ и перпендикулярна к нему. Также следует сказать, что каждая точка прямой t считается симметричной сама себе.

Прямая t – ось симметрии.

Фигура называется симметричной относительно прямой t , если для каждой точки фигуры симметричная ей точка относительно прямой t также принадлежит этой фигуре.

Прямая t называется осью симметрии фигуры, говорят, что фигура обладает осевой симметрией.

Осевой симметрией обладают неразвёрнутый угол, равнобедренный и равносторонний треугольники, прямоугольник и ромб, буквы (смотри презентацию).

    Зеркальная симметрия (симметрия относительно плоскости)

Две точки Р 1 и Р называются симметричными относительно плоскости а если они лежат на прямой, перпендикулярной плоскости а, и находятся от неё на одинаковом расстоянии

Зеркальная симметрия хорошо знакома каждому человеку. Она связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура зеркально симметрична другой.

На плоскости фигурой с бесчисленным множеством осей симметрии был круг. В пространстве бесчисленное множество плоскостей симметрии имеет шар.

Но если круг является единственным в своем роде, то в трехмерном мире имеется целый ряд тел, обладающих бесконечным множеством плоскостей симметрии: прямой цилиндр с кругом в основании, конус с круговым основанием, шар.

Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой. Достойно удивления, что такие сложные фигуры, как пятиконечная звезда или равносторонний пятиугольник, тоже симметричны. Как это вытекает из числа осей, они отличаются именно высокой симметрией. И наоборот: не так просто понять, почему такая, казалось бы, правильная фигура, как косоугольный параллелограмм, несимметрична.

4. П оворотная симметрия (или радиальная симметрия)

Поворотная симметрия - это симметрия, сохраняющаяся форму предмета при повороте вокруг некоторой оси на угол, равный 360°/ n (или кратный этой величине), где n = 2, 3, 4, … Указанную ось называют поворотной осью n -го порядка.

При п=2 все точки фигуры поворачиваются на угол 180 0 ( 360 0 /2 = 180 0 )вокруг оси, при этом форма фигуры сохраняется, т.е. каждая точка фигуры переходит в точку той же фигуры(фигура преобразуется сама в себя). Ось называют осью второго порядка.

На рисунке 2 показана ось третьего порядка, на рисунке 3 – 4 порядка, на рисунке 4 - 5-го порядка.

Предмет может иметь более одной поворотной оси: рис.1 – 3оси поворота, рис.2 -4 оси, рис 3 – 5 осей, рис. 4 – только 1 ось

Всем известные буквы «И» и «Ф» обладают поворотной симметрией Если повернуть букву «И» на 180° вокруг оси, перпендикулярной к плоскости буквы и проходящей через ее центр, то буква совместится сама с собой. Иными словами, буква «И» симметрична относительно поворота на 180°, 180°= 360°: 2, n =2 , значит она обладает симметрией второго порядка.

Заметим, что поворотной симметрией второго порядка обладает также буква «Ф».

Кроме того буква и имеет центр симметрии, а буква Ф ось симметрии

Вернемся к примерам из жизни: стакан, конусообразный фунтик с мороженым, кусочек проволоки, труба.

Если мы повнимательней присмотримся к этим телам, то заметим, что все они, так или иначе состоят из круга, через бесконечное множество осей симметрии которого проходит бесчисленное множество плоскостей симметрии. Большинство таких тел (их называют телами вращения) имеют, конечно, и центр симметрии (центр круга), через который проходит по меньшей мере одна поворотная, ось симметрии.

Отчетливо видна, например, ось у конуса фунтика с мороженым. Она проходит от середины круга (торчит из мороженого!) до острого конца конуса-фунтика. Совокупность элементов симметрии какого-либо тела мы воспринимаем как своего рода меру симметрии. Шар, без сомнения, в отношении симметрии является непревзойденным воплощением совершенства, идеалом. Древние греки воспринимали его как наиболее совершенное тело, а круг, естественно, как наиболее совершенную плоскую фигуру.

Для описания симметрии конкретного объекта надо указать все поворотные оси и их порядок, а также все плоскости симметрии.

Рассмотрим, например, геометрическое тело, составленное из двух одинаковых правильных четырехугольных пирамид.

Оно имеет одну поворотную ось 4-го порядка (ось АВ), четыре поворотные оси 2-го порядка (оси СЕ, DF , MP , NQ ), пять плоскостей симметрии (плоскости CDEF , AFBD , ACBE , AMBP , ANBQ ).

5 . Переносная симметрия

Ещё одним видом симметрии является переносная с имметрия.

О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние «а» либо расстояние, кратное этой величине, она совмещается сама с собой Прямая, вдоль которой производится перенос, называется осью переноса, а расстояние «а» - элементарным переносом, периодом или шагом симметрии.

а

Периодически повторяющийся рисунок на длинной ленте называется бордюром. На практике бордюры встречаются в различных видах (настенная роспись, чугунное литье, гипсовые барельефы или керамика). Бордюры применяют маляры и художники при оформлении комнаты. Для выполнения этих орнаментов изготавливают трафарет. Передвигаем трафарет, переворачивая или не переворачивая его, обводим контур, повторяя рисунок, и получается орнамент (наглядная демонстрация).

Бордюр легко построить с помощью трафарета (исходного элемента), сдвигая или переворачивая его и повторяя рисунок. На рисунке изображены трафареты пяти видов: а ) несимметричный; б, в ) имеющие одну ось симметрии: горизонтальную или вертикальную; г ) центрально-симметричный; д ) имеющий две оси симметрии: вертикальную и горизонтальную.

Для построения бордюров используют следующие преобразования:

а ) параллельный перенос; б ) симметрию относительно вертикальной оси; в ) центральную симметрию; г ) симметрию относительно горизонтальной оси.

Аналогично можно построить розетки. Для этого круг делят на n равных секторов, в одном из них выполняют образец рисунка и затем последовательно повторяют последний в остальных частях круга, поворачивая рисунок каждый раз на угол 360°/ n .

Наглядным примером применения осевой и переносной симметрии может служить забор, изображённый на фотографии.

Вывод: Таким образом, существуют различные виды симметрии, симметричные точки в каждом из этих видов симметрии строятся по определённым законам. В жизни мы повсюду встречаемся тем или иным видом симметрии, а часто у предметов, которые нас окружают, можно отметить сразу несколько видов симметрии. Это создаёт порядок, красоту и совершенство в окружающем нас мире.

ЛИТЕРАТУРА:

    Справочник по элементарной математике. М.Я. Выгодский. – Издательство « Наука». – Москва 1971г. – 416стр.

    Современный словарь иностранных слов. - М.: Русский язык, 1993г .

    История математики в школе IX - X классы. Г.И. Глейзер. – Издательство «Просвещение». – Москва 1983г. – 351стр.

    Наглядная геометрия 5 – 6 классы. И.Ф. Шарыгин, Л.Н. Ерганжиева. – Издательство «Дрофа», Москва 2005г. – 189стр.

    Энциклопедия для детей. Биология. С. Исмаилова. – Издательство «Аванта+». – Москва 1997г. – 704стр.

    Урманцев Ю.А. Симметрия природы и природа симметрии - М.: Мысль arxitekt / arhkomp 2. htm , , ru.wikipedia.org/wiki/

С древних времен человек выработал представления о красоте. Красивы все творения природы. По-своему прекрасны люди, восхитительны животные и растения. Радует взор зрелище драгоценного камня или кристалла соли, сложно не любоваться снежинкой или бабочкой. Но почему так происходит? Нам кажется правильным и завершенным вид объектов, правая и левая половина которых выглядит одинаково, как в зеркальном отражении.

Видимо, первыми о сути красоты задумывались люди искусства. Древние скульпторы, изучавшие строение человеческого тела, еще в V веке до н.э. стали применять понятие «симметрия». Это слово имеет греческое происхождение и означает гармоничность, пропорциональность и похожесть расположения составляющих частей. Платон утверждал, что прекрасным может быть лишь то, что симметрично и соразмерно.

В геометрии и математике рассматриваются три вида симметрии: осевая симметрия (относительно прямой), центральная (относительно точки) и зеркальная (относительно плоскости).

Если каждая из точек объекта имеет в пределах него свое точное отображение относительно его центра - имеет место центральная симметрия. Ее примером являются такие геометрические тела, как цилиндр, шар, правильная призма и т.д.

Осевая симметрия точек относительно прямой предусматривает, что эта прямая пересекает середину отрезка, соединяющего точки, и перпендикулярна ему. Примеры биссектриса неразвернутого угла равнобедренного треугольника, любая прямая, проведенная через центр окружности, и т.д. Если свойственна осевая симметрия, определение зеркальных точек можно наглядно представить, просто перегнув ее по оси и сложив равные половинки «лицом к лицу». Искомые точки при этом соприкоснутся.

При зеркальной симметрии точки объекта расположены одинаково относительно плоскости, что проходит через его центр.

Природа мудра и рациональна, поэтому почти все ее творения имеют гармоничное строение. Это относится и к живым существам, и к неодушевленным объектам. Для строения большинства форм жизни характерен один из трех видов симметрии: двусторонняя, лучевая или шаровидная.

Чаще всего осевая может наблюдаться у растений, развивающихся перпендикулярно поверхности почвы. В этом случае симметричность является результатом поворота идентичных элементов вокруг общей оси, находящейся в центре. Угол и частота их расположения могут быть разными. Примером служат деревья: ель, клен и другие. У некоторых животных осевая симметрия тоже встречается, но это бывает реже. Конечно, природе редко присуща математическая точность, но похожесть элементов организма все равно поразительна.

Биологами чаще рассматривается не осевая симметрия, а двусторонняя (билатеральная). Ее примером могут служить крылья бабочки или стрекозы, листья растений, лепестки цветов и т.д. В каждом случае правая и левая части живого объекта равны и представляют собой зеркальное отображение друг друга.

Шаровидная симметрия характерна для плодов многих растений, для некоторых рыб, моллюсков и вирусов. А примерами лучевой симметрии являются некоторые виды червей, иглокожие.

В глазах человека несимметричность чаще всего ассоциируется с неправильностью или ущербностью. Поэтому в большинстве творений людских рук прослеживается симметричность и гармония.