Жесткость воды: способы умягчения и технологические схемы. Методы, способы умягчения жесткой воды дома Химические методы умягчения воды

Избыток железа, магниевых и кальциевых солей повышает жесткость воды.

Это негативно влияет на работу бытовой техники и оборудования, состояние волос, ногтей и кожи, провоцирует развитие хронических заболеваний органов ЖКТ и сердечно-сосудистой системы.

Как же безопасно смягчить жесткую воду, используя простые и доступные способы?

Признаки повышенной жесткости

Что такое жесткость воды? Это показатель, определяющий уровень магниевых и кальциевых солей, которые входят в химический состав жидкости. Единицы измерения - моль/куб.м и мг.экв./литр.

Жесткая вода - частое явление, которое обусловлено влиянием подземных вод, насыщенных солями химических элементов. Кроме того, подобная жидкость может содержать хлоридные и фосфатные соединения, а также различные органические загрязнители.

Чтобы определить жесткость воды своими руками, рекомендуется воспользоваться специальным устройством - кондуктометром, предназначенным для замера параметра электропроводимости жидкости. Высокий показатель указывает на повышенную концентрацию солей металлов в воде.

В процессе кипячения химические соли образуют осадочную массу, но большая часть соединений попадают в человеческий организм, оседают на стенках приборов, техники и оборудования.

Какая же вода будет считаеться жесткой? Основные признаки повышенной концентрации солей следующие:

  • моющие средства плохо вспениваются;
  • после кипячения образуется накипь и белый налет;
  • после стирки вещей и мытья посуды остаются характерные разводы;
  • жесткая жидкость приобретает неприятный горький привкус;
  • вода оказывает негативное влияние на эксплуатационные характеристики тканей;
  • повышенная концентрация солей приводит к заболеваниям выделительной системы, а также к дряблости и сухости кожи.

Типы жесткой воды

По степени жесткости (в градусах) вода бывает:

  • Мягкой (от 0 до 2 градусов). Она распространена в местности с большим количеством болот и торфяников. К этой категории также относится чистая талая вода.
  • Средней (от 2 до 7 градусов). Такой тип жидкости распространен практически в любой местности. Как правило, обеспечивают частные домовладения водой средней жесткости.
  • Жесткой (от 7,1 до 11 градусов). Встречается на территориях с избыточным количеством химических солей и загрязнителями. Оказывает негативное воздействие на человеческий организм.
  • Сверхжесткой (от 11 градусов). Природную воду жесткой делает близкое расположение пещер и шахт, поэтому для питья она не используется.

По концентрации химических веществ жесткость воды может быть:

  • Постоянная. Определяется присутствием агрессивных компонентов и солей металлов, устойчивых к распадению в процессе кипячения. Для их удаления используются специальные фильтрующие системы.
  • Временная. Обуславливается временным присутствием солей кальция и магния, нагрев которых приводит к распадению и образованию осадочной массы. Это означает, что убрать такие соединения можно обычной термической обработкой.

Многих потребителей интересует ответ на достаточно распространенный вопрос - как смягчить воду в домашних условиях? Существуют ли эффективные способы смягчения воды, которые можно легко реализовать на практике?

  • термическую обработку;
  • заморозку;
  • реагентное воздействие;
  • фильтрацию.

Устранение жесткости термической обработкой (кипячением)

Самый простой способ смягчения воды в домашних условиях - это термическая обработка, т. е. кипячение. Воздействие высоких температур приводит к разрушению ионных связей между химическими элементами и образованию осадка. Далее мягкая вода может использоваться в питьевых и хозяйственных целях.

Кипячение воды проводится следующим образом:

Более сложный вариант предусматривает кипячение воды на протяжении часа и отстаивание в течение 24 часов.

Кипячением убирают соли металлов, пары углекислого газа, хлористых соединений и механические примеси.

Несмотря на свою востребованность и простоту, термическая обработка имеет некоторые недостатки:

  • кипячение приводит к быстрому образованию известкового налета, который сложно удалить;
  • кипяченая вода не подходит для полива комнатных растений;
  • длительное использование жидкости после термической обработки может привести к ухудшению работы желудочно-кишечного тракта;
  • вода меняет свои органолептические характеристики.

Заморозка - простой и эффективный способ

Снизить жесткость воды можно обычной заморозкой или вымораживанием. Этот способ предусматривает воздействие низких температурных режимов на соли химических элементов с образованием кристаллов. Смягчение воды в этом случае происходит постепенно, без изменения структуры жидкости.

Заморозка выполняется следующим образом:

  • емкость наполняется водой и загружается в морозильную камеру;
  • после заморозки 75% жидкости сливается остаток, в котором содержатся все вредные элементы;
  • талая жидкость становится питьевой, значит, может быть использована для приготовления еды, полива цветов и стирки вещей из деликатных тканей.

Единственным недостатком такого способа является сложность подготовки большого объема талой воды.

Обработка химическими и пищевыми реагентами

Смягчение жесткой воды реагентами - эффективный способ борьбы с солями металлов. Воздействие химических веществ на примеси в воде приводит к образованию осадочной массы. Для этих целей используются следующие реагенты:

  • Сода пищевая. Она способствует снижению кислотности и концентрации солей. Умягчение воды содой происходит следующим образом: для стирки используется 2 ч. л. на 11 литров, для приготовления еды - 1 ч. л. на 3 литра.
  • Сода кальцинированная (каустическая). Применяется для смягчения жидкости, предназначенной для бытовых и хозяйственных нужд, - 2 ч. л. на 11 литров. Для пищевых целей подобную жидкость использовать нельзя.
  • Лимонная и уксусная кислота, сок лимона. Натуральные пищевые реагенты, которые способствуют смягчению и окислению воды. Применяются для устранения накипи в посуде и при ополаскивании волос. Оптимальная концентрация - на 2 литра воды 1 ст. л. уксусной кислоты, 1 ч. л. лимонной кислоты или сока лимона.
  • Синтетические реагенты в таблетированной и порошковой форме. Устранить повышенную жесткость можно специальными химическими веществами, разработанными для посудомоечного или стирального оборудования.

К недостаткам данного способа можно отнести:

  • необходимость соблюдения точной дозировки каждого реагента;
  • поддержание условий хранения специальных средств - каустической соды и синтетических смягчителей в домашних условиях в соответствии с рекомендациями производителей. Исключение составляют пищевые реагенты - сода, уксус и лимонная кислота.

Снижение жесткости фильтрующими системами

Как сделать воду мягкой, если она добывается из скважины или колодца, возведенного рядом с домом?

  • Фильтры кувшинного типа. Это самый востребованный способ очистки и смягчения водопроводной или колодезной воды. Так называется фильтр, внешне напоминающий кувшин, оснащенный угольным картриджем для очистки. Небольшой объем емкости позволяет фильтровать от 1 до 4 литров воды за один цикл. Жесткая вода, очищенная кувшинным фильтром, приобретает не только мягкость, но и специфический привкус. Периодичность замены картриджа - каждые 2 месяца.
  • Ионообменные установки. Подобные фильтрующие системы представлены двумя емкостями, оснащенными специальными фильтрами на основе ионообменных смол и солевого раствора. Вначале жесткая вода попадает в резервуар со смолами, а далее поступает в емкость с соляным раствором. Почему в этом случае жидкость теряет жесткость? Поскольку происходит ее насыщение натрием, который постепенно вытесняет соли магния и кальция.
  • . Это самый эффективный способ очистки и смягчения жидкости. Установка оснащается специальным мембранным фильтром, создающим рабочее давление внутри камеры. Благодаря этому жесткая вода полностью очищается от сторонних примесей, а значит, становится мягкой.

Решить проблему повышенной жесткости воды можно своими силами, достаточно применить на практике эффективные способы или внедрить уникальную авторскую методику.

Федеральное государственное образовательное учреждение высшего профессионального образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Политехнический Институт

Реферат

Методы осветления и умягчения воды.

Использование ингибитора ИОМС.

Руководитель ________________ Яковенко А.А

Студент ТЭ 06 - 03 ________________ Минаева Д.С

Красноярск 2009

Методы осветление воды.

Под осветлением воды понимают выделение из нее взвешенных веществ при непрерывном движении воды через специальные сооружения (отстойники, осветлители) с малыми скоростями. При малых скоростях движения воды содержащиеся в ней взвешенные вещества, удельный вес которых больше удельного веса воды, под действием силы тяжести осаждаются, образуя в отстойнике осадок.

Технологические схемы обработки воды определяются в каждом конкретном случае в зависимости от предъявляемых требований и включают следующие этапы работы:

    технологические исследования и предварительные лабораторные испытания применяемых реагентов;

    подбор и расчет оборудования для дозирования и смешивания реагентов;

    выбор оборудования для тонкослойного осветления и уплотнения взвеси;

    выбор и расчет скорых фильтров с зернистой загрузкой, как напорного, так и открытого типа;

    выбор технологии и оборудования для обезвоживания шлама с последующей утилизацией;

    выбор оборудования по обеззараживанию путем дозирования раствора хлорреагента (гипохлорит натрия) и контролю качества обработанной воды.

В зависимости от направления движения воды отстойники разделяют на горизонтальные, вертикальные и радиальные.

Горизонтальный отстойник (рис. 1) представляет собой резервуар прямоугольного сечения, продольная (более длинная) ось которого направлена по движению воды. Осветляемая вода по трубе 1 направляется в распределительный желоб 2, имеющий ряд отверстий, служащих для более равномерного распределения потока воды по сечению отстойника. Скорость движения воды в этих отверстиях не должна превышать 0,4 м/сек. Осветленная вода поступает в другой желоб 3 и из него по трубе 4 отводится на фильтры. Осевшие частицы (шлам) скапливаются на дне, которое должно иметь уклон, обратный движению воды.

Время отстаивания для горизонтальных отстойников принимают обычно для коагулированной смеси не более 4 ч. Горизонтальные отстойники для осветления больших количеств воды могут разделяться по высоте на несколько параллельно включенных отделений (этажей). Преимущества этажных отстойников (предложение проф. П. И. Пискунова) - малая площадь застройки и меньший расход бетона. Такой отстойник построен на одной из крупнейших очистных станций Советского Союза.

Рис. 1. Схема горизонтального отстойника: 1 - лоток; 2 - приемная камера; 3 - приемный желоб; 4 - на фильтр; 5 - для удаления осадка

Рис. 2. Схема вертикального отстойника 1 - центральная труба; 2-лоток; 3- отводящая труба; 4 - трубопровод для удаления осадка

Вертикальные отстойники (рис. 2) представляют собой круглый в плане, иногда квадратный, резервуар с коническим днищем и центральной трубой, в которую подается осветляемая вода из камеры хлопье образования.

По выходе из центральной трубы в отстойник вода движется вверх с малой скоростью и сливается уже осветленной через борт концентрически расположенного желоба, откуда отводится на фильтр. Выпадающий на дно отстойника осадок периодически удаляется.

Скорость протекания воды в центральной трубе принимается от 30 до 75 мм/сек. Время отстаивания воды в отстойнике Т = 2 ч. Скорость восходящего движения воды составляет 0,5-0,6 мм/сек.

Диаметр отстойника не должен превышать 12 м, а отношение диаметра к высоте отстойника обычно принимают не более 1,5.

Радиальные отстойники представляют собой круглые резервуары с малоконическим дном. Вода поступает в центральную трубу и из нее направляется в радиальном направлении к сборному лотку по периферии отстойника. Отстойники имеют небольшую глубину, осадок удаляют механизированным способом без нарушения работы отстойника. Радиальные отстойники сооружают диаметром от 10 л* и более при глубине от 1,5-2,5 ж (у стенки отстойника) до З-5 м (в центре).

Выбор типа отстойника зависит от суточной производительности станции, общей ее компоновки, рельефа местности, характера грунтов и т. д. Вертикальные отстойники рекомендуется применять при суточной производительности до 3000 м3. Горизонтальные Отстойники применяют при производительности станции более 30 000 м3/сут как в случае коагулирования воды, так и без него.

Радиальные отстойники целесообразны при больших расходах воды (более 40 000 м3/сут). Преимуществом этих отстойников по сравнению с прямоугольными горизонтальными является механизированное удаление осадка без прекращения работы отстойника. Их применяют при большой мутности речной воды (с коагулированием и без него) в основном для осветления производственной воды.

Осветлители со взвешенным осадком. Процесс осветления протекает значительно интенсивнее, если осветляемая вода после коагулирования пропускается через массу ранее образованного осадка, поддерживаемого во взвешенном состоянии током

Рис. 3. Осветлители: а - первоначальной конструкции; б - коридорного типа: 1 - распределительные трубы; 2 - желоба с затопленными отверстиями; 3 - рабочая часть осветлителя; 4- защитная зона; 5 - лоток отвода; 6 - труба для подсоса осадка; 7 - осадкоприемные окна; 8-уплотнитель осадка; 9 - трубы для сброса осадка) 10 - труба для отвода осветленной воды

Такие осветлители дают более высокий эффект осветления воды, чем в обычных отстойниках, что объясняется более быстрым укрупнением и задержанием взвеси при прохождении коагулированной воды через взвешенный осадок.

Применение осветлителя со взвешенным остатком дает возможность по сравнению с обычным отстойником снизить расход коагулянта, уменьшить размеры сооружений и получить более высокий эффект осветления воды.

Осветлитель первоначальной конструкции представляет собой цилиндрический резервуар с шламоуплотнителем в центральной его части (рис. 3, а). Здесь вода с реагентом поступает в воздухоотделитель, затем проходит вниз в дырчатые распределительные трубы 1, а далее- в отверстия дырчатого дна 2.

Вода, проходя через слой взвешенного осадка 3, выходит в зону осветления 4 и переливается в отводные желоба. В шламонакопитель 5 поступает излишек взвешенного осадка, откуда его периодически удаляют в канализацию.

Осветлитель коридорного типа (см. рис. 3, б) представляет собой прямоугольный резервуар. Коагулированная вода поступает в осветлитель по трубе 1 и через дырчатые трубы 2 распределяется в нижней (рабочей) части 3 осветлителя. Скорость движения воды в рабочей части должна быть такой, чтобы хлопья коагулянта находились во взвешенном состоянии. Этот слой способствует задержанию взвешенных частиц. Степень осветления воды при этом значительно выше, чем в обычном отстойнике.

Над рабочей частью находится защитная зона 4, где взвешенного слоя нет. Осветленная вода отводится лотком 5 и трубами 10 для последующей обработки. Избыточное количество осадка посредством отсоса в трубу 6 отводится через окна 7 в осадкоуплотнитель 8, где осадок уплотняется и периодически сбрасывается в канализацию по трубам 9.

Восходящую скорость потока в рабочей части осветлителя принимают равной 1-1,2 мм/сек.

Методы умягчения воды.

Устранение из воды солей жесткости, т. е. умягчение ее, необходимо производить для питания котельных установок, причем жесткость воды для котлов среднего и низкого давления должна быть не более 0,3 мг.экв/л. Умягчать воду требуется также для таких производств, как текстильное, бумажное, химическое, где вода должна иметь жесткость не более 0,7-1,0 мг.экв/л. Умягчение воды для хозяйственно-питьевых целей также целесообразно, особенно в случае, если она превышает 7 мг.экв/л.

Применяют следующие основные методы умягчения воды:

1) реагентный метод.- путем введения реагентов, способствующих образованию малорастворимых соединений кальция и магния и выпадению их в осадок;

2) катионитовый метод, при котором умягчаемая вода фильтруется через вещества, обладающие способностью обменивать содержащиеся в них катионы (натрия или водорода) на катионы кальция и магния, растворенных в воде солей. В результате обмена Задерживаются ионы кальция и магния и образуются натриевые соли, не придающие воде жесткость;

3) термический метод, заключающийся в нагревании воды до температуры выше 100°, при этом почти полностью удаляются соли карбонатной жесткости.

Часто методы умягчения применяют комбинированно. Например, часть солей жесткости удаляют реагентным способом, а оставшуюся часть - с помощью катионного обмена.

Из реагентных методов содово-известковый способ умягчения является наиболее распространенным. Сущность его сводится к получению вместо растворенных в воде солей Са Mg нерастворимых солей СаС0 3 и Mg(OH) 2 , выпадающих в осадок.

Оба реагента - соду Na 2 C0 3 и известь Са(ОН) 2 -вводят в умягчаемую воду одновременно или поочередно.

Соли карбонатной, временной жесткости удаляют известью, не карбонатной, постоянной жесткости - содой. Химические реакции при удалении карбонатной жесткости протекают следующим образом:

Са (НС0 3) 2 + Са (ОН) 2 = 2 СаС0 3 + 2Н 2 0.

При этом карбонат кальция СаС03 выпадает в осадок. При удалении бикарбоната магния Mg(HC0 3) 2 реакция идет так:

Mg (НСОа)2 + 2Са (ОН) 2 = Mg (ОН) 2 + 2СаС0 3 + 2Н 2 0.

Гидрат окиси магния Mg(OH) 2 коагулирует и выпадает в осадок. Для устранения некарбонатной жесткости в умягчаемую воду вводят Na 2 C0 3 . Химические реакции при удалении некарбонатной жесткости следующие:

Na 2 C0 8 + CaS0 4 = CaCO 8 +Na 2 S0 4 ;

Na 2 CO 3 + CaCl 2 = CaC0 3 + 2NaCl.

В результате реакции получается углекислый кальций, который выпадает в осадок.

Для глубокого умягчения применяют такие вспомогательные мероприятия, как подогревание обрабатываемой воды примерно до 90, при этом остаточная жесткость может быть доведена до 0,2- 0,4 мг.экв/л.

Без подогрева обработка воды проводится большими избыточными дозами извести с последующим удалением этих избытков путем продувки воды углекислотой. Последний процесс называется рекарбонизацией.

На рис. 4 представлена схема реагентной водоумягчительной установки, в состав которой входят устройство для приготовления и дозирования растворов реагентов, смесители, камеры реакции, осветлители, фильтры.

Для умягчения равномерно подаваемой воды, поступающей непрерывно, применяют те же дозаторы растворов соды и извести, что и при коагулировании. Если же расход умягчаемой воды имеет колебания, применяют так называемые пропорциональные дозаторы.

Рис. 4. Схема реагентного умягчения воды:1 -камера реакций (вихревой реактор); 2 - осветлитель; 3 - кварцевый фильтр; 4 -смеситель; 5, 6 и 7 - дозаторы растворов реагентов; 8, 9 и 10 - баки для растворения коагулянтов и соды для приготовления известкового молока; 11 - бак; 12 - насос; 13 - воздухоотделитель.

Содово-известковый способ пригоден для умягчения воды с любым соотношением карбонатной и некарбонатной жесткости.

Недостатки содово-известкового способа умягчения заключаются в следующем: 1) вода не умягчается полностью; 2) установки для умягчения громоздки; 3) необходима тщательная дозировка соды и извести, чего трудно достичь из-за непостоянства состава умягчаемой воды и реагентов.

Катионитовый способ умягчения основан на способности веществ, называемых катеонитами, обменивать содержащиеся в них катионы натрия Na+ или водорода Н+ на катионы кальция или магния, растворенных в воде. В соответствии с этим различают натрий-катионитовый и водород-натрий: катионитовый методы умягчения воды.

При помощи катионитов вода умягчается на установке, состоящей из нескольких металлических напорных резервуаров, загруженных катионитом (рис. 5).

Необработанная вода поступает в фильтр по трубам А, Б и В; выпуск умягченной воды происходит по трубе Г При работе фильтра задвижки 2 и 5 открыты, а остальные {1, 3, 4 и 6) закрыты. Перед регенерацией фильтр промывают.

Для промывки фильтра вода из бака Д подается по трубе Е и проходит по дренам снизу вверх. Продолжительность промывки 20-30 мин, интенсивность 4-6 л/сек на 1 м2. Промывная вода с фильтров отводится по трубам В, Б, Ж, причем задвижки 4 и 3 открыты, а остальные закрыты.

Регенерирующий раствор катионита при регенерации подается по трубе В, проходит фильтр сверху вниз и сбрасывается по трубе. В этом случае задвижки 1 и 6 открыты, остальные (2-5) закрыты; продолжительность регенерации около 30-60 мин, а отмывки от регенерирующего раствора 40-60 мин.

Рис. 5. Схема катионитовой водоумягчительной установки

Преимущества катионитового способа заключаются в следующем: 1) вода умягчается почти полностью; 2) дозировать нужно только раствор поваренной соли или серной кислоты; 3) фильтры изготовляют заводским способом. К числу недостатков этого способа следует отнести необходимость предварительного осветления воды, так как коллоидные и органические вещества обволакивают зерна катионитов и уменьшают их обменную способность.

Реагенты, применяемые при обработке воды, вводят, в воду в следующих местах:

а) хлор (при предварительном хлорировании) - во всасывающие трубопроводы насосной станции первого подъема или в водоводы, подающие воду на станцию очистки;

б) коагулянт - в трубопровод перед смесителем или в смеситель;

в) известь для подщелачивания при коагулировании - одновременно с коагулянтом;

г) активированный уголь для удаления запахов и привкусов в воде до 5 мг/л - перед фильтрами. При больших дозах уголь следует вводить на насосный станции первого подъема или одновременно с коагулянтом в смеситель водоочистной станции, но не ранее чем через 10 мин после введения хлора;

д) хлор и аммиак для обеззараживания воды вводят до очистных сооружений и в фильтрованную воду. При наличии в воде фенолов аммиак следует вводить как при предварительном, так и при окончательном хлорировании.

Раствор коагулянта приготовляют в растворных баках; откуда его надлежит выпускать или перекачивать в расходные баки. Для подачи в воду заданного количества раствора коагулянта следует предусматривать установку дозаторов.

При использовании автоматических дозаторов, основанных на принципе изменения электропроводности воды в зависимости от примесей, известь для подщелачивания следует вводить после отбора коагулированной воды, идущей к дозатору.

К специальным видам очистки и обработки воды относятся: опреснение, обессоливание, обезжелезивание, удаление из воды растворенных газов и стабилизация.

Механизм действия ингибиторов ИОМС.

При нагреве воды в процессе работы системы отопления происходит термический распад присутствующих в ней гидрокарбонат-ионов с образованием карбонат-ионов. Карбонат-ионы, взаимодействуя с присутствующими в избытке ионами кальция, образуют зародыши кристаллов карбоната кальция. На поверхности зародышей осаждаются все новые карбонат-ионы и ионы кальция, вследствие чего образуются кристаллы карбоната кальция, в котором часто присутствует карбонат магния в виде твердого раствора замещения. Осаждаясь на стенках теплотехнического оборудования, эти кристаллы срастаются, образуя накипь (рис. 6, а).

Основным компонентом, обеспечивающим противонакипную активность всех рассматриваемых ингибиторов, являются органофосфонаты - соли органических фосфоновых кислот. При введении органофосфонатов в воду, содержащую ионы кальция, магния и других металлов они образуют весьма прочные химические соединения - комплексы. (Во многие современные ингибиторы органофосфонаты входят уже в виде комплексов с переходными металлами, главным образом с цинком.) Так как в одном литре природной или технической воды содержится 1020–1021 ионов кальция и магния, а органофосфонаты вводят в количестве всего лишь 1018–1019 молекул на литр воды, все молекулы органофосфонатов образуют комплексы с ионами металлов, а комплексоны как таковые в воде не присутствуют. Комплексы органофосфонатов адсорбируются (осаждаются) на поверхности зародышей кристаллов карбоната кальция, препятствуя дальнейшей кристаллизации карбоната кальция. Поэтому при введении в воду 1–10 г/м3 органофосфонатов накипь не образуется даже при нагревании очень жесткой воды (рис. 6, б).

Комплексы органофосфонатов способны адсорбироваться не только на поверхности зародышей кристаллов, но и на металлических поверхностях. Образующаяся тонкая пленка затрудняет доступ кислорода к поверхности металла, вследствие чего скорость коррозии металла снижается. Однако наиболее эффективную защиту металла от коррозии обеспечивают ингибиторы на основе комплексов органических фосфоновых кислот с цинком и некоторыми другими металлами, которые были разработаны и внедрены в практику профессором Ю.И. Кузнецовым. В приповерхностном слое металла эти соединения способны распадаться с образованием нерастворимых соединений гидроксида цинка, а также комплексов сложной структуры, в которых участвует много атомов цинка и железа. В результате этого образуется тонкая, плотная, прочно сцепленная с металлом пленка, защищающая металл от коррозии. Степень защиты металла от коррозии при использовании таких ингибиторов может достигать 98%.

Современные препараты на основе органофосфонатов не только ингибируют солеотложения и коррозию, но и постепенно разрушают застарелые отложения накипи и продуктов коррозии. Это объясняется образованием в порах накипи поверхностных адсорбционных слоев органофосфонатов, структура и свойства (например, коэффициент температурного расширения) которых отличаются от структуры кристаллов накипи. Возникающие при эксплуатации системы отопления колебания и градиенты температуры приводят к расклиниванию кристаллических сростков накипи. В результате накипь разрушается, превращаясь в тонкую взвесь, легко удаляемую из системы. Поэтому при введении препаратов, содержащих органофосфонаты, в системы отопления с большим количеством застарелых отложений накипи и продуктов коррозии, необходимо регулярно спускать отстой из фильтров и грязевиков, установленных в нижних точках системы. Спуск отстоя следует производить, в зависимости от количества отложений, 1–2 раза в сутки, из расчета подпитки системы чистой, обработанной ингибитором, водой в количестве 0,25–1% водного объема системы в час. Необходимо отметить, что при повышении концентрации ингибитора свыше 10–20 г/м3 накипь разрушается с образованием весьма грубых взвесей, способных забить узкие места системы отопления. Поэтому передозировка ингибитора в этом случае грозит засорением системы. Наиболее эффективная и безопасная очистка систем отопления от застарелых отложений накипи и продуктов коррозии достигается при использовании препаратов, содержащих поверхностно-активные вещества, например, композиции «ККФ».

а) б)

Рис. 6. Разрез внутриквартального 89 мм трубопровода горячего водоснабжения:

а - по истечении двух лет работы на воде жeсткостью 8–12 мг-экв/дм3;

б - через шесть месяцев после начала обработки воды ингибитором ИОМС-1.

Основные методы умягчения воды

Теоретические основы умягчения воды, классификация методов

Термический метод умягчения воды

Реагентные методы умягчения воды

Технологические схемы и конструктивные элементы установок реагентного умягчения воды

Термохимический метод умягчения воды

Умягчение воды диализом

Магнитная обработка воды

Литература

Теоретические основы умягчения воды, классификация методов

Под умягчением воды подразумевается процесс удаления из нее катионов жесткости, т.е. кальция и магния. В соответствии с ГОСТ 2874-82 "Вода питьевая" жесткость воды не должна превышать 7 мг-экв/л. Отдельные виды производств к технологической воде предъявляют требования глубокого ее умягчения, т.е. до 0,05.0,01 мг-экв/л. Обычно используемые водоисточники имеют жесткость, отвечающую нормам хозяйственно-питьевых вод, и в умягчении не нуждаются. Умягчение воды производят в основном при ее подготовке для технических целей. Так, жесткость воды для питания барабанных котлов не должна превышать 0,005 мг-экв/л. Умягчение воды осуществляют методами: термическим, основанным на нагревании воды, ее дистилляции или вымораживании; реагентными, при которых находящиеся в воде ионы Ca (II ) и Mg (II ) связывают различными реагентами в практически нерастворимые соединения; ионного обмена, основанного на фильтровании умягчаемой воды через специальные материалы, обменивающие входящие в их состав ионы Na (I ) или Н (1) на ионы Са (II) и Mg (II ), содержащиеся в воде диализа; комбинированным, представляющим собой различные сочетания перечисленных методов.

Выбор метода умягчения воды определяется ее качеством, необходимой глубиной умягчения и технико-экономическими соображениями. В соответствии с рекомендациями СНиПа при умягчении подземных вод следует применять ионообменные методы; при умягчении поверхностных вод, когда одновременно требуется и осветление воды, - известковый или известково-содовый метод, а при глубоком умягчении воды - последующее катионирование. Основные характеристики и условия применения методов умягчения воды приведены в табл. 20.1.

умягчение вода диализ термический

Для получения воды для хозяйственно-питьевых нужд обычно умягчают лишь ее некоторую часть с последующим смешением с исходной водой, при этом количество умягчаемой воды Q y определяют по формуле

где Ж о. и. - общая жесткость исходной воды, мг-экв/л; Ж 0. с. - общая жесткость воды, поступающей в сеть, мг-экв/л; Ж 0. у. - жесткость умягченной воды, мг-экв/л.

Методы умягчення воды

Показатель

термический

реагентный

ионообменный

Характеристика процесса

Воду нагревают до температуры выше 100°С, при этом удаляется карбонатная и некарбонатная жесткости (в виде карбоната кальция, гидрокси-. да магния и гипса)

В воду добавляют известь, устраняющую карбонатную и магниевую жесткость, а также соду, устраняющую некарбонат - иую жесткость

Умягчаемая вода пропускается через катионито - вые фильтры

Исходная вода фильтруется через полупроницаемую мембрану

Назначение метода

Устранение карбонатной жесткости из воды, употребляемой для питания котлов низкого н среднего давления

Неглубокое умягчение при одновременном осветлении воды от взвешенных веществ

Глубокое умягчение воды, содержащей незначительное количество взвешенных веществ

Глубокое умягчение воды

Расход воды на собственные нужды

Не более 10%

До 30% и более пропорционально жесткости исходной воды

Условия эффективного применения: мутность исходной воды, мг/л

Не более 8

Жесткость воды, мг-экв/л

Карбонатная жесткость с преобладанием Са (НС03) 2, некарбонатная жесткость в виде гипса

Не выше 15

Остаточная жесткость воды, мг-экв/л

Карбонатная жесткость до 0,035, CaS 04 до 0,70

0,03.0,05 прн одноступенчатом и до 0,01 при двухступенчатом ка - тионировании

0,01 и ниже

Температура воды,°С

До 30 (глауконит), до 60 (сульфоугли)

Термический метод умягчения воды

Термический метод умягчения воды целесообразно применять при использовании карбонатных вод, идущих на питание котлов низкого давления, а также в сочетании с реагентными методами умягчения воды. Он основан на смещении углекислотного равновесия при ее нагревании в сторону образования карбоната кальция, что описывается реакцией

Са (НС0 3) 2 - > СаСО 3 + С0 2 + Н 2 0.

Равновесие смещается за счет понижения растворимости оксида углерода (IV), вызываемого повышением температуры и давления. Кипячением можно полностью удалить оксид углерода (IV) и тем самым значительно снизить карбонатную кальциевую жесткость. Однако, полностью устранить указанную жесткость не удается, поскольку карбонат кальция хотя и незначительно (13 мг/л при температуре 18°С), но все же растворим в воде.

При наличии в воде гидрокарбоната магния процесс его осаждения происходит следующим образом: вначале образуется сравнительно хорошо растворимый (110 мг/л при температуре 18° С) карбонат магния

Mg (НСО 3) → MgC 0 3 + С0 2 + Н 2 0,

который при продолжительном кипячении гидролизуется, в результате чего выпадает осадок малорастворимого (8,4 мг/л). гидроксида магния

MgC 0 3 +H 2 0 → Mg (0H ) 2 +C 0 2 .

Следовательно, при кипячении воды жесткость, обусловливаемая гидрокарбонатами кальция и магния, снижается. При кипячении воды снижается также жесткость, определяемая сульфатом кальция, растворимость которого падает до 0,65 г/л.

На рис. 1 показан термоумягчитель конструкции Копьева, отличающийся относительной простотой устройства и надежностью работы. Предварительно подогретая в аппарате обрабатываемая вода поступает через эжектор на розетку пленочного подогревателя и разбрызгивается над вертикально размещенными трубами, и по ним стекает вниз навстречу горячему пару. Затем совместно с продувочной водой от котлов она по центрально подающей трубе через дырчатое днище поступает в осветлитель со взвешенным осадком.

Выделяющиеся при этом из воды углекислота и кислород вместе с избытком пара сбрасываются в атмосферу. Образующиеся в процессе нагревания воды соли кальция и магния задерживаются во взвешенном слое. Пройдя через взвешенный слой, умягченная вода поступает в сборник и отводится за пределы аппарата.

Время пребывания воды в термоумягчителе составляет 30.45 мин, скорость ее восходящего движения во взвешенном слое 7.10 м/ч, а в отверстиях ложного дна 0,1.0,25 м/с.

Рис. 1. Термоумягчитель конструкции Копьева.

15 - сброс дренажной воды; 12 - центральная подающая труба; 13 - ложные перфорированные днища; 11 - взвешенный слой; 14 - сброс шлама; 9 - сборник умягченной воды; 1, 10 - подача исходной и отвод умягченной воды; 2 - продувка котлов; 3 - эжектор; 4 - выпар; 5 - пленочный подогреватель; 6 - сброс пара; 7 - кольцевой перфорированный трубопровод отвода воды к эжектору; 8 - наклонные сепарирующие перегородки

Реагентные методы умягчения воды

Умягчение воды реагентными методами основано на обработке ее реагентами, образующими с кальцием и магнием малорастворимые соединения: Mg (OH ) 2 , СаС0 3 , Са 3 (Р0 4) 2 , Mg 3 (P 0 4) 2 и другие с последующим их отделением в осветлителях, тонкослойных отстойниках и осветлительных фильтрах. В качестве реагентов используют известь, кальцинированную соду, гидроксиды натрия и бария и другие вещества.

Умягчение воды известкованием применяют при ее высокой карбонатной и низкой некарботаной жесткости, а также в случае, когда не требуется удалять из воды соли некарбонатной жесткости. В качестве реагента используют известь, которую вводят в виде раствора или суспензии (молока) в предварительно подогретую обрабатываемую воду. Растворяясь, известь обогащает воду ионами ОН - и Са 2+ , что приводит к связыванию растворенного в воде свободного оксида углерода (IV) с образованием карбонатных ионов и переходу гидрокарбонатных ионов в карбонатные:

С0 2 + 20Н - → СО 3 + Н 2 0,НСО 3 - + ОН - → СО 3 - + Н 2 О.

Повышение в обрабатываемой воде концентрации ионов С0 3 2 - и присутствие в ней ионов Са 2+ с учетом введенных с известью приводит к повышению произведения растворимости и осаждению малорастворимого карбоната кальция:

Са 2+ + С0 3 - → СаС0 3 .

При избытке извести в осадок выпадает и гидроксид магния

Mg 2+ + 20Н - → Mg (ОН) 2

Для ускорения удаления дисперсных и коллоидных примесей и снижения щелочности воды одновременно с известкованием применяют коагуляцию этих примесей сульфатом железа (II) т.е. FeS 0 4 *7 Н 2 0. Остаточная жесткость умягченной воды при декарбонизации может быть получена на 0,4.0,8 мг-экв/л больше некарбонатной жесткости, а щелочность 0,8.1,2 мг-экв/л. Доза извести определяется соотношением концентрации в воде ионов кальция и карбонатной жесткости: а) при соотношении [Са 2+ ] /20<Ж к,

б) при соотношении [Са 2+ ] /20 > Ж к,

где [СО 2 ] - концентрация в воде свободного оксида углерода (IV), мг/л; [Са 2+ ] - концентрация ионов кальция, мг/л; Ж к - карбонатная жесткость воды, мг-экв/л; Д к - доза коагулянта (FeS 0 4 или FeCl 3 в пересчете на безводные продукты), мг/л; е к - эквивалентная масса активного вещества коагулянта, мг/мг-экв (для FeS 0 4 е к = 76, для FeCl 3 е к = 54); 0,5 и 0,3 - избыток извести для обеспечения большей полноты реакции, мг-экв/л.

Выражение Д к /е к берут со знаком минус, если коагулянт вводится раньше извести, и со знаком плюс, если совместно или после.

При отсутствии экспериментальных данных дозу коагулянта находят из выражения

Д к = 3 (С) 1/3 , (20.4)

где С - количество взвеси, образующейся при умягчении воды (в пересчете на сухое вещество), мг/л.

В свою очередь, С определяют, используя зависимость

Известково-содовый метод умягчения воды описывается следующими основными реакциями:

По этому методу остаточная жесткость может быть доведена до 0,5.1, а щелочность с 7 до 0,8.1,2 мг-экв/л.

Дозы извести Д и и соды Д с (в пересчете на Na 2 C 0 3), мг/л, определяют по формулам

(20.7)

где - содержание в воде магния, мг/л; Ж н. к. - некарбонатная жесткость воды, мг-экв/л.

При известково-содовом методе умягчения воды образующиеся карбонат кальция и гидроксид магния могут пересыщать растворы и долго оставаться в коллоидно-дисперсном состоянии. Их переход в грубодисперсный шлам длителен, особенно при низких температурах и наличии в воде органических примесей, которые действуют как защитные коллоиды. При большом их количестве жесткость воды при реагентном умягчении воды может снижаться всего на 15.20%. В подобных случаях перед умягчением или в процессе его из воды удаляют органические примеси окислителями и коагулянтами. При известково-содовом методе часто процесс проводят в две стадии. Первоначально из воды удаляют органические примеси и значительную часть карбонатной жесткости, используя соли алюминия или железа с известью, проводя процесс при оптимальных условиях коагуляции. После этого вводят соду и остальную часть извести и доумягчают воду. При удалении органических примесей одновременно с умягчением воды в качестве коагулянтов применяют только соли железа, поскольку при высоком значении рН воды, необходимом для удаления магниевой жесткости, соли алюминия не образуют сорбционно-активного гидроксида. Дозу коагулянта при отсутствии экспериментальных данных рассчитывают по формуле (20.4). Количество взвеси определяют по формуле

где Ж о - общая жесткость воды, мг-экв/л.

Более глубокое умягчение воды может быть достигнуто ее подогревом, добавлением избытка реагента-осадителя и созданием контакта умягчаемой воды с ранее образовавшимися осадками. При подогреве воды уменьшается растворимость СаСО 3 и Mg (OH ) 2 и более полно протекают реакции умягчения.

Разбирать проблемы излишней жесткости современной воды невозможно без детального изучения многообразия способов умягчения воды . Обилие фильтров на полках магазинов и рынков заставляет задуматься над тем, что выбор прибора для квартиры не так прост. И чтобы выбрать нужный вариант умягчителя нужно ознакомиться хотя бы с разными видами способов умягчения воды. Не зная основ, невозможно разбираться в теме.

Хотя о накипи у нас знают достаточно много, до сих пор существует слишком много предубеждений в отношении фильтрующих приборов, а также мифов о бесполезности , по крайне мере для бытовых условий. Излишняя жесткость воды приводит к большому количеству нежелательных явлений. Цена образования накипи и плохой растворимости жестковатой некачественной водой любых моющих средств слишком дорога, чтобы сегодня пренебрегать вопросами умягчения воды.

У нас почему-то считается, что излишняя жесткость в воде это миф, и что использование фильтров, это выкачка денег из доверчивых граждан. При этом все прекрасно видели и знают, что такое накипь и насколько трудно бороться с ней, как непросто ее удалять, постоянно из месяца в месяц. Если у вас есть сомнения в степени жесткости вашей воды, вы всегда можете провести химический анализ воды. Он всегда поможет вам не только определить, на сколько вода у вас чистая, и пригодная в пищу. На основе ее результатов вы сможете составить правильную, то есть грамотную .

О том, что вы пользуетесь некачественной водой, вы узнаете по многим признаком, столь нам всем хорошо знакомым. Излишняя жесткость проявит себя даже при варке. Такая вода заставляет мясо становится более жестким. Овощи при варке в такой воде разваливаются. И извечная кромка осадка солей жесткости. Если у вас уже есть такие чайники или кастрюли с извечной твердой кромкой внутри на поверхностях, то сто процентов жесткость в вашей воде давно превысила допустимые пределы. О наличии подобной воды в квартире вы узнаете не только по известковому налету внутри чайника, оставит свой след вода и даже при мытье посуды в посудомоечной машине. Казалось бы, бокалы и тарелки после мытья в такой машинке должны выходить скрипящими и идеально чистыми, но не в случае с жестковатой водой. Об использовании подобной воды можно будет узнать по предательским белым разводам на бокалах, по едва заметному белому налету на тарелках.

Сказывается жесткость и на качестве приготовленных блюд, и чая с кофе. У настоящего натурального кофе, заваренного на хорошей воде совсем другой вкус, и если вы настоящий кофеман, то вопрос создания системы очистки от жесткости вас ни разу не смутит. Стоит только попробовать хороший кофе на правильной воде.

О присутствии в воде излишков солей кальция с магнием скажет и плохо выстиранная одежда. Образование накипи – это далеко не все к чему приводит работа с подобной водой. Есть у нее еще такая особенность – как плохая растворимость, что порошка, что мыла с моющим средством для посуды. Работая с жестковатой водой, сэкономить никак не удастся. Вот эта особенность приводит к быстрому износу тканей, они начинают трещать и рваться буквально на глазах. И стоит установить перед стиральной машинкой один электромагнитный умягчитель воды АкваЩИт и проблема с повышенной жесткостью воды будет решена. Но многие считают, что прибор на магнитах не может чистить воду. Пока они же на собственном примере не убеждаются, как рационально и экономно работают способы умягчения воды.

И еще один момент - использование некачественной воды для личного употребления, в конце концов, негативно отразиться на нашем здоровье. Нельзя безнаказанно пить такую воду. И ваш организм вам ответит различными хроническими заболеваниями, ранним старением кожи и выпадением волос. Только не все люди могут сразу идентифицировать причину таких болезней в жесткости воды.

Способы умягчения воды подразумевают применение специальных приборов. Их задача устранить из воды излишек двух карбонатных солей. Но есть и более примитивные способы. Их почти не используют сегодня, но когда-то до изобретения , их применяли наши предки в стремлении хоть как-то оградить себя от пагубного влияния кальция и магния.

Таким самым простым способом умягчения воды является применение простого кусочка кремния. Все, что вам нужно для получения мягкой воды, это купить кусочек кремния размером где-то 5х5 см и положить его в бутыль (3-литровый) с водопроводной водой. Через недели вы сможете пить «заряженную» воду и она будет не плесневелая, а мягкая и вкусная, еще и с лекарственными свойствами. Таково влияние кремния на соли кальция и магния. Очень часто в древности облицовывали колодец кремнием, чтобы получить хорошую воду.

На сегодня использование такого кремниевого способа умягчения воды имеет право на жизнь, но очистить с его помощью большое количество воды вряд ли удастся. Поэтому только лечебное, лекарственное применение такого способа.

Для промышленности использование примитивных способов умягчения воды невозможно. В этой ситуации даже применение тщательно продуманной, сделанной на основе химического анализа воды, системы подготовки воды не является полной защитой от образования накипи. Так в теплоэнергетике, все равно придется проводить очистку от известкового налета. И разница состоит в том, что после работы , налет образуется слабенький, а нарастает медленнее и что немаловажно достаточно легко устраняется. Вам даже не придется покупать под него специальные средства. Достаточно обычной промывки водой.

Образование накипи не хуже плохой растворимости в воде вредит бытовым приборам и оборудованию. Проблема еще в том, что если накипь не убирать своевременно, то она начинает нарастать еще быстрее, и еще увереннее. И в след за ней, начинает потихоньку развивать свою деятельность коррозия. Эти два явления неразрывно связаны между собой.

Мало того, что накипь, это не эстетично, некрасиво, мало полезно, но еще и вместе с образованием накипи возрастает угроза потерять технику и дорогостоящее оборудование. Проблемы с накипью особенно в промышленности – это всегда очень большие расходы. Способы умягчения воды. как реагентные, так и безреагентные не могли проявиться просто так. Должны были быть веские причины для их создания. Вот такой причиной и является накипь.

В котельных, особенно паровых, – это целая история. Для того, чтобы паровая котельная работала, качество пара должно быть очень высоким и за время очистки, что вода, что пар проходят огромное количество инстанций, что помогает в дальнейшем паровым электростанциям прослужить гораздо дольше, чем при работе с неочищенной водой.

К чему же приводит плохая вода? Ее разогревают. Соли жесткости в процессе нагрева образуют малорастворимый осадок, то есть накипь, которая при нагреве оседает именно на нагреваемую поверхность. Образованный слой, хоть и образовался в процессе нагрева, но сам по себе тепло не поглощает,и не передает. И мы помним, отложился он как раз на нагревательной поверхности. Со временем плотность слоя накипи достигает таких пределов, что тепло абсолютно перестает передаваться в воду.

За этот отрезок времени расход топлива растет просто невообразимо. Ведь прибор или оборудование пытается работать. А их работа – это греть воду. И чтобы это сделать, нужно попытаться так нагреть накипь, чтобы она хотя бы 10 процентов переданного ей тепла отдала в воду. Для этого приходится расходовать очень много топлива. Это занимает много времени и поверхности при этом терпят бешенные перегрузки. Естественно вечно это продолжаться не может. Металлы, как будь то попадают в мартеновскую печь, если они покрыты слоем накипи.

Вот и получается, что бытовой прибор может отключиться, чтобы не перегореть, а котел на твердом топливе этого сделать не может. Его только может разорвать от подобного эффекта. Здесь и человеческие жертвы возможны. Поэтому к тому, нужно относиться очень правильно и внимательно. Упускать очистки от накипи особенно в промышленности категорически нельзя.

Любая очистка от накипи промышленного оборудования подразумевает под собой обязательную остановку системы. Это простои, это снова недопоставленная вовремя продукция, это расходы. Сделать очистку от накипи при работающем оборудовании не представляется возможным. Только остановка и очистка. И чаще всего разборная очистка, т.к. оборудование, что в котельных, что в металлургии сложное. Добраться до самых отдаленных мест сразу не получится. Вот и считайте, так ли уж дешево удаление. Бригады по монтажу оборудования, бригады по чистке поверхностей, время на простои, оплата за чистящие средства. На удалении накипи сэкономить точно не получится.

И как бы вы не старались, бесследно провести какую либо противонакипную очистку точно не удастся. Всегда будут царапины, механическая очистка снимает не только защитное покрытие, она заденет и основной слой. Ну а любая испорченная поверхность – любимое место отложения накипи. Вот и получается, что устраняя одну накипь, мы стимулируем быстрое образование других слоев. Так, что невыгодно постоянно удалять накипь, совсем не выгодно.

Теперь, что касается способов умягчения жесткой воды. Хоть и может показаться на первый взгляд, что приборов для умягчения много, и, тем не менее, способов умягчения жесткой воды не так уж много, хотя выбор какой-никакой есть. Способы можно смело поделить на химические и физические. Химическая очистка воды подразумевает использование разнообразных реагентов, в процессе работы которых соли жесткости становятся малорастворимыми, выпадают в осадок и легко выводятся из систем, где используют воду. Давайте подробнее узнаем про эти способы умягчения жесткой воды. Их виды и преимущества.

Физические способы умягчения воды

Группа же физических способов умягчения воды работает без применения каких-либо химикатов. Эта группа идеальна для очистки водопроводной воды, то есть той воды, которая в том числе идет для личного использования – пить и есть. Там вода должна быть мягкой по умолчанию.

Мембранные способы умягчения воды

Еще можно выделить группу мембранных способов умягчения воды . Сюда входят очень популярный в промышленности обратный осмос. Это метод тонкой очистки с помощью давления. Внутри такого прибора располагается тонкая мембрана, выполненная из дорогостоящих материалов. Вся поверхность такой мембраны испещрена отверстиями. Диаметр таких дырочек не превышает размера молекулы воды. Такая полупроницаемая поверхность дает возможность устранить из воды практически любые примеси, которые имеют размер более молекулы воды.

С таким прибором вы легко сможете получить воду идеальную для той же фармакологии или для производства питьевой воды. Дистиллят получают с помощью нанофильтрации. Это еще один вид обратного осмоса, только низконапорного.

Главный козырь этого способа умягчения воды – высочайшая степень очистки, возможность получить воду с заданными признаками, только сменив мембрану. Но есть у обратного осмоса, как и у других мембранных способов очистки воды, свои минусы. Когда прибор работает, очень много воды находится внутри прибора. Так происходит по нескольким причинам. Во-первых, скорость просачивания через мембрану далеко не такая высокая, плюс прибор включает в себя не один фильтр. В установку могут входить обратный осмос, механический фильтр и кондиционер. Последний в обязательном порядке ставят на установках для производства питьевой воды. Такой способ умягчения воды очень хорошо устраняет любые примеси вплоть до бактерий с вирусами, что для питьевой воды немаловажно. Потом без кондиционирования такая вода становится непригодной для личного использования. Ну и потом использование обратного осмоса значительно ограничивает стоимость установки. Далеко не все в быту пока могут дозволить себе, использовать такую установку.

Химический способ умягчения воды

Химический способ умягчения воды как мы уже говорили, подразумевает использование химических веществ. Сюда относят и натрий хлор, и фосфаты. Для такого умягчения чаще всего используют дозаторы, которые монтируют на трубу водопровода. Такие способы плохи тем, что химикаты могут образовывать другие примеси в воде и получается все тот же осадок. Только он еще и очень плохо устраняется. При этом к химическому способу умягчения воды относится и химическое восстановление фильтрующих частей приборов. Поэтому самым известной такого способа является ионный обмен. Здесь картридж восстанавливают с помощью очень соленого раствора. После восстановления картридж сможет снова работать.

Ионообменный способ умягчения воды

Ионный обмен , как способ умягчения воды один из самых простых. Каких-то особых конструкций он не требует. Основа, как понятно из названия ионный обмен. Работает внутри такого прибора гелеобразная смола. В ней содержится большое количество натрия, который очень быстро при контакте с жестковатой водой сменяется на кристаллы солей кальция и магния. Вот и получается простой и быстрый процесс очистки, без каких либо усилий. Спустя определенный период времени, весь натрий из картриджа вымывается.

В промышленности картридж восстанавливают, промывая раствором, а вот в быту просто меняют, т.к. питьевая вода не терпит реагентов. Скорость очистки отличная, только вот расходы на картриджи или их восстановление довольно большие. Да и в быту фильтр-кувшин в состоянии от силы очистить вам пару тройку литров. Для полной защиты от накипи и жесткости придется в обязательном порядке использовать еще один фильтр.

Безреагентный способ умягчения воды

Ярким представителем безреагентного способа умягчения воды является магнитное силовое воздействие. Основу таких приборов составляют мощные магниты. Обязательно постоянные. Такой прибор еще только монтируешь, а магнитное поле уже работает. При этом прибор легко установить, легко снять. Обслуживания он не требует, не нужны ему картриджи и очистки. Он работает. Магнитное силовое поле, таким образом, пронизывает воду, что находящиеся в ней соли жесткости теряют прежнюю форму. Теперь это острые иголочки. Они натирают поверхности со старой накипью, очень качественно при этом ее удаляя. Но магнитное воздействие очень придирчиво к воде. Ему нужна вода комнатной температуры, текущая в одном направлении и с определенной скоростью. Убрать все минусы магнитного способа умягчения воды получилось только путем добавления электрического тока. Так и изобрели электромагнитную установку.

Ознакомившись со всеми способами умягчения воды , нужно сделать вывод, что сегодня отказаться от умягчения означает рисковать здоровьем своей семьи и полное отсутствие дальновидности. Поэтому все больше народу, сегодня выбирает именно такой путь .

Из рекламы мы знаем, что слишком жесткая вода ведет к появлению накипи и быстрому выходу из строя стиральных машин. Производители не врут. Излишняя жесткость вредит не только бытовой технике, но и здоровью: делает волосы тонкими и ломкими, ускоряет старение кожи, способствует развитию заболеваний почек и мочеполовой системы, создает дополнительную нагрузку на сосуды. В зависимости от ситуации смягчить воду можно разными методами, в этой статье мы сделаем обзор самых доступных в домашних условиях средств.

Теория. Жесткость воды – это параметр, характеризующий концентрацию солей кальция и магния в составе. Измеряется в единицах моль/м3 (моль на кубический метр) или градусах жесткости (принято в России) – мг-экв/л (миллиграммы эквивалента на литр). Чем выше этот показатель, тем хуже.

Согласно исследованиям Всемирной организации здравоохранения (ВОЗ) нормальная жесткость воды составляет 1-2°Ж (мг-экв/л). В России допустимой нормой считается показатель до 7°Ж.

По величине жесткости вода делится на:

  • мягкую (0-2°Ж) – в природе встречается в болотистой местности с торфяниками, также в эту группу попадает незагрязненный другими веществами растаявший снег. Интересно, что смыть мыло мягкой водой очень сложно.
  • среднюю (2,1-7°Ж) – распространена наиболее часто;
  • жесткую (7-10°Ж) – вредна и опасна для здоровья;
  • сверхжесткую (больше 10°Ж) – в природных условиях встречается в озерах карстовых пещер, пить такую воду невозможно.

В зависимости от содержащихся веществ жесткость воды бывает:

  • постоянной – вызвана наличием в воде хлоридов, фосфатов, силикатов, сульфатов и нитратов магния, кальция, которые не распадаются при кипячении, в основном эти вещества удаляются только фильтрами;
  • временной – встречается в большинстве случаев, обусловлена гидрокарбонатами магния и кальция, которые при нагреве распадаются, образуя отложения накипи на трубах и нагревательных устройствах, что приводит к повышенным затратам электроэнергии и поломке.

Как определить жесткость воды

Самый простой вариант – посмотреть на специальную карту жесткости воды своего региона. Также можно использовать кондуктометр (TDS-метр) – специальное устройство, измеряющее электропроводимость воды, в народе называется «солемер». Чем выше показатель на экране, тем жестче вода, поскольку содержит много солей. Точное соотношение можно посчитать по таблицам.

Признаки повышенной жесткости воды:

  • мыло и стиральный порошок дают очень мало пены;
  • стойкая накипь в чайнике после нескольких кипячений;
  • после мытья посуды появляются разводы;
  • вода имеет слегка горьковатый привкус (чувствуют не все люди);
  • после отстаивания на стенках емкостей с водой появляется белый налет.

Калькулятор пересчета единиц жесткости воды

°Ж (Россия) °DH (Германия) °Clark (Великобритания) °F (Франция) ppm (США)

Методы смягчить воду

1. Кипячение. Самый простой доступный способ избавиться от временной жесткости без использования химических веществ и сложных устройств. При высокой температуре гидрокарбонаты и сульфат кальция распадаются, выпадая осадком на дне посуды и нагревательных элементах. Смягченная вода подходит для любых целей: питья, стирки, мытья и пр.

Доведите воду до кипения, оставьте на 2-3 минуты, затем охладите до нужной температуры.

Недостатки:

  • частично снижается только временная жесткость воды;
  • ограниченность – обеспечить все бытовые нужды кипяченой водой очень сложно;
  • спустя некоторое время из-за слоя накипи нагревательные системы и емкости приходится менять или чистить;
  • при кипячении из воды улетучиваются полезные вещества;
  • нагревание требует значительных затрат энергии.

2. Отстаивание. После 1-2 суток в защищённом от прямых солнечных лучей месте смягчает воду из колодцев и скважин, предназначенную для полива цветов и комнатных растений. Может использоваться для очистки питьевой воды, но только если начальная жесткость лишь слегка выше нормы.

3. Вымораживание. Эффективный метод, не изменяющий структуру воды, вследствие чего все полезные вещества остаются в составе. Поставьте воду в морозилку, когда на стенках емкости появится лед, слейте жидкость по центру.

Растопленный лед используйте как питьевую воду или для полива вазонов.

Недостаток: подготовить этим методом большие объемы воды сложно.

4. Пищевая и кальцинированная сода. Благодаря химическим свойствам сода смягчает воду и снижает кислотность.

Добавьте 2 чайные ложки пищевой или 1 чайную ложку кальцинированной соды на 10 литров воды, хорошо перемешайте и дождитесь появления осадка на дне. Во время приготовления еды всыпьте 1 чайную ложку пищевой соды на 3 литра воды, чтобы крупы и овощи лучше разваривались.

Недостатки:

  • смягченная содой вода не может использоваться как питьевая (кроме отваривания);
  • сложность в постоянной обработке большого объёма воды.

5. Уксус и лимонная кислота. Частично снижают жесткость, но значительно повышают кислотность, вследствие чего эти средства не рекомендуются для питьевой воды. Зачастую их используют в косметических целях.

Чтобы смягчить воду для мытья волос, добавьте 1 столовую ложку уксуса (1 чайную ложку лимонной кислоты или сок одного лимона) на 2 литра воды, перемешайте. Перед использованием дайте настояться 4-5 минут.

6. Каменная (поваренная) соль. Она же хлористый натрий, который растворяет содержащиеся в воде соли кальция и магния, препятствуя появлению накипи на нагревательных устройствах. Из-за изменений химического состава и вкуса этот метод не рекомендуется для питья.

В основном соль смягчает воду, предназначенную для посудомоечных машин. Для удобства использования производители поставляют соль в виде гранул и таблеток, но в большинстве случаев по составу предлагаемое вещество ничем не отличается от поваренной соли.

7. Химические средства. В первую очередь это раскрученные марки Calgon, Finish и другие, которые продаются в виде порошка или таблеток. Применяются согласно инструкции. Продаются в магазинах бытовой химии.

Недостаток: смягчают воду только для стирки.

8. Фильтры. Универсальные системы, предназначенные для быстрого смягчения большого количества жесткой воды и удаления вредных примесей. Могут действовать автономно или подключаться к водопроводу. Отличаются конструкцией и принципом действия.

Виды систем понижения жесткости воды:

  • Фильтр-кувшин – рассчитан на объем 1-3 литра, подходит для очистки питьевой воды, приготовления чая или кофе. Действует с помощью специального картриджа. В зависимости от интенсивности использования и начально жесткости воды служит до 2-х месяцев, потом требует замены фильтрующего картриджа.
  • Ионообменные системы – фильтруют и смягчают воду любой жесткости с помощью специальных ионообменных смол и солевого раствора (вещества находятся в разных резервуарах). Эти фильтры отличаются высокой производительностью и относительной простотой обслуживания. Недостатки: не подходят для питьевой воды, требуют периодической замены реагентов и подключения к канализации.
  • Магнитные и электромагнитные смягчители – устанавливаются на магистралях или на трубах водопроводов в виде накладок. Под воздействием магнитного или электромагнитного поля соли жесткости теряют способность откладываться в виде накипи и стекают в специальные отстойники. Недостаток: не подходят для очистки питьевой воды.