Жесткая вода и способы ее умягчения химия. Умягчение жесткой воды

Знать степень жесткости используемой воды обязательно. От показателя жесткости питьевой воды зависит множество аспектов нашей жизни: сколько использовать стирального порошка, нужны ли меры по умягчению жесткой воды, сколько проживут аквариумные рыбки в воде, нужно ли введение полифосфатов в обратном осмосе и т.д.

Существует множество способов определения жесткости:

  • по количеству образованной пены моющего средства;
  • по району;
  • по количеству накипи на нагревательных элементах;
  • по вкусовым свойствам воды;
  • с помощью реагентов и специальных приборов

Что такое жесткость?

В воде присутствуют основные катионы: кальций, магний, марганец, железо, стронций. Последние три катиона мало влияют на жесткость воды. Существуют еще трехвалентный катион алюминия и железа, которые при определенном рН образуют известняковый налет.

Жесткость может быть разного вида:

  • общая жесткость – общее содержание ионов магния и кальция;
  • карбонатная жесткость – содержание гидрокарбонатов и карбонатов при рН большем 8,3. Их легко удалить через кипячение: во время нагревания распадаются на угольную кислоту и осадка;
  • некарбонатная жесткость – соли кальция и магния сильных кислот; нельзя удалить с помощью кипячения.

Существует несколько единиц жесткости воды: моль/м 3 , мг-экв/л, dH, d⁰, f⁰, ppm CaCO 3 .

Почему вода имеет жесткость? Ионы щелочноземельных металлов есть во всех минерализованных водах. Они берутся из залежей доломитов, гипса и известняка. Источники воды могут иметь жесткость в различных диапазонах. Существует несколько систем жесткости. За границей к ней подходят более «жестко». К примеру у нас вода считается мягкой при жесткости 0-4 мг-экв/л, а в США – 0-1,5 мг-экв/л; очень жесткая вода в России – свыше 12 мг-эк/л, а в США – свыше 6 мг-экв/л.

Жесткость маломинерализованных вод на 80% обусловлена ионами кальция. С ростом минерализации доля ионов кальция резко снижается, а ионов магния – увеличивается.

Чаще всего поверхностные воды обладают меньшей жесткостью, чем подземные. Так же жесткость зависит от сезона: во время таяния снегов она снижается.

Жесткость питьевой воды изменяет ее вкус. Порог чувствительности для иона кальция – от 2 до 6 мг-экв/л, зависит от анионов. Вода становиться горьковатой и плохо влияет на процесс пищеварения. ВОЗ не дает каких-либо рекомендаций по жесткости воды, так как нет точных доказательств ее влияния на организм человека.

Ограничение жесткости необходимо для нагревательных приборов. Например, в котлах – до 0,1 мг-экв/л. Мягкая вода имеет низкую щелочность и вызывает коррозию водопроводных коммуникаций. Коммунальные службы используют специальную обработку, что бы найти компромисс между налетом и коррозией.

Существует три группы способов умягчения воды:

  • физический;
  • химический;
  • экстрасенсорный.

Реагентные способы умягчения воды

Ионный обмен

Химические способы основаны на ионном обмене. Фильтрующей массой является ионообменная смола. Она представляет собой длинные молекулы, которые собрали в шарики желтого цвета. Из шариков выступают маленькие отростки с ионами натрия.

Во время фильтрации вода пропитывает всю смолу, а ее соли становятся на место натрия. Сам натрий уноситься водой. Из-за разницы зарядов ионов вымывается в 2 раза больше солей, чем оседает. С течением времени соли все заменяются и смола перестает работать. Период работы у каждой смолы свой.

Ионообменная смола может быть в картриджах или насыпаться в длинный болон — колонна. Картриджи имеют небольшой размер и используются только для снижения жесткости питьевой воды. Идеально подходит для умягчения воды в домашних условиях. Ионообменная колонна используется для умягчение воды в квартире или небольшом производстве. Кроме большой стоимости колонна должна периодически загружаться восстановленной фильтрующей массой.

Если в смоле картриджа не осталось ионов натрия, то его просто заменяют на новый, а старый – выбрасывают. При использовании ионообменной колоны смолу восстанавливают в специальном баке с рассолом. Для этого растворяют таблетированию соль. Солевой раствор регенерирует способность смолы к обмену ионами.

Обратной стороной является дополнительная способность воды удалять железо. Оно забивает смолу и приводит ее в полную непригодность. Следует вовремя делать анализ воды!

Использование других химических реагентов

Существует ряд менее популярных, но эффективных способов умягчения воды:

  • кальцинированная сода или известь;
  • полифосфаты;
  • антискаланты – соединения против образования накипи.
Умягчение известью и содой

Умягчение воды содой

Метод умягчения воды с использованием извести называется известкованием. Используют гашенную известь. Содержание карбонатов снижается.

Смесь соды и извести наиболее эффективно. Для наглядности умягчения воды в домашних условиях можно добавить кальцинированную соду в воду для стирки. На ведро берут 1-2 чайные ложки. Хорошо размешивают и ожидают выпадения осадка. Подобным методом пользовались женщины в Древней Греции, используя печную золу.

Вода после извести и соды не пригодна для пищевых целей!

Умягчение полифосфатами

Полифосфаты способны связывать соли жесткости. Они представляют собой крупные белые кристаллы. Вода проходит через фильтр и растворяет полифосфаты, связывая соли.

Недостатком является опасность полифосфатов для живых организмов, в том числе и человека. Они являются удобрением: после попадания в водоем наблюдается активный рост водорослей.

Полифосфаты так же непригодны для умягчения питьевой воды!

Физический метод умягчения воды

Физические способы борются с последствиями высокой жесткости – накипью. Это безреагентная очистка воды. При ее использовании не происходит снижение концентрации соли, а просто предотвращается вред для труб и нагревательных элементов. Вода становиться мягкой или для большего понимания – умягченной.

Выделяют следующие физические способы:

  • использование магнитного поля;
  • с помощью электрического поля;
  • ультразвуковая обработка;
  • термический способ;
  • использование малоточечных токовых импульсов.
Магнитное поле

Безреагентное умягчение воды с помощью магнитного поля имеет множество нюансов. Эффективность достигается только при соблюдении определенных правил:

  • определенная скорость потока воды;
  • подобранная напряженность поля;
  • определенный ионный и молекулярный состав воды;
  • температура входящей и выходящей воды;
  • время обработки;
  • атмосферное давление;
  • давление воды и т.д.

Изменение какого-либо параметра требует полной перенастройки всей системы. Реакция должна быть незамедлительной. Несмотря на сложность контроля параметров, магнитное умягчение воды используют в котельных.

Но для умягчения воды в домашних условиях с помощью магнитного поля почти невозможно. При появлении желания приобрести магнитик на трубопровод, подумайте, как вы подберете и будите обеспечивать необходимые параметры.

Использование ультразвука

Ультразвук приводит к кавитации – образованию газовых пузырьков. Повышается вероятность встречи ионов магния и кальция. Появляются центры кристаллизации не на поверхности труб, а в толще воды.

При умягчении горячей воды ультразвуком кристаллы не достигают размера, необходимого для осаждения – накипь не образуется на теплообменных поверхностях.

Дополнительно возникают высокочастотные колебания, которые препятствуют образования налета: отталкивают кристаллы от поверхности.

Изгибные колебания пагубны для образованного слоя накипи. Она начинает откалываться кусочками, которые могут засорить каналы. Перед использованием ультразвука необходимо очистить поверхности от накипи.

Электромагнитные импульсы

Безреагентные умягчители воды на основе электромагнитных импульсов меняют способ кристаллизации солей. Создаются динамические электрические импульсы с разными характеристиками. Они идут по проводу-обмотке на трубе. Кристаллы обретают форму длинных полочек, которым трудно закрепиться на поверхности теплообмена.

В процессе обработки выделяется углекислота, которая борется с уже имеющимся известковым налетом и образует защитную пленку на металлических поверхностях.

Термоумягчение

Кто-то слышит про этот метод первый раз. Но на самом деле им пользуется каждый с детства. Это привычное для нас кипячение воды.

Все замечали, что после кипячения воды образуется осадок из солей жесткости. Кофе или чай делают из более мягкой воды, чем водопроводная.

А сколько нужно кипятить? Все просто: с ростом температуры и ее воздействием соли жесткости менее растворимые и больше выпадают в осадок. В процессе нагревания выделяется углекислый газ. Чем быстрее он улетучивается, тем больше образуется известняковый налет. Плотно закрытая крышка препятствует выведению углекислого газа, а в открытой емкости быстро испаряется жидкость.

При использовании термоумягчения следует оставлять крышку в емкости слегка открытой. Так же следует обеспечить максимальную площадь осаждения солей для ускорения умягчения питьевой воды.

При жесткости до 4 мг-экв/л термическое умягчение не нужно: соли будут оседать медленнее, чем испаряется вода. В оставшейся воде будет повышенная концентрация многих примесей.

Многие слышали об умягчении жесткой воды и стараются обязательно заказать себе для водоподготовки умягчитель.Так ли это важно и нужно?

Физиологическая норма жесткости указана в СанПиНе 2.1.4.1116-02 на бутылированную воду и составляет от 1,5 до 3,5 ммоль/л. Для бытовой техники требуется еще более мягкая воды, чтобы не образовывалась накипь.

Различают два вида жёсткости:
Карбонатная (временная) - называют потому, что она устраняется кипячением.
Некарбонатную (постоянную) - называют потому, что при кипячении жёсткость не устраняется, но при выпаривании на стенках сосуда образуется в виде накипи светло-белый малорастворимый осадок типа сульфата кальция или магния.Соли MgCl2, CaCl2, MgSO4, содержащиеся в воде с постоянной жёсткостью, вызывают коррозию стальных конструкций и ускоряют износ водонагревательного и отопительного оборудования.При использовании для водона-гревательного оборудования и отопительной техники жёсткой воды образуется накипь из карбонатов кальция и магния, гипса и других солей.Образование накипи затрудняет нагревание воды, вызывает увеличение расхода электричества и топлива.

В жёсткой воде плохо развариваются мясо, овощи, крупа, плохо заваривается чай. При стирке тканей (как и при мытье головы) образующиеся нерастворимые соединения осаждаются на поверхности нитей и постепенно разрушают волокна.

Умягчение воды - процесс удаления из неё катионов жёсткости, т.е. кальция и магния.

Термический метод основан на нагревании воды до температуры выше точки кипения, её дистилляцией или вымораживанием с целью устранения карбоната кальция и карбоната магния. Вследствие применения указанного метода остаточная жёсткость воды составляет не более 0,7 ммоль/л. Поэтому термический метод применяется для технических нужд, в частности при использовании вод,идущих на питание котлов низкого давления, а также в сочетании с реагентными методами.

При умягчении воды реагентными методами используют реагенты, образующие при взаимодействии с кальцием и магнием малорастворимые соединения с последующим их отделением в осветителях, тонкослойных отстойниках и осветительных фильтрах. В качестве реагентов-осадителей используют известь, кальцинированную соду, гидрооксиды натрия и бария и другие вещества. Выбор реагентов зависит от качества исходной воды и условий её дальнейшего применения. При применении реагентных методов остаточная жёсткость воды составит до 0,7 мг/л. В соответствии с рекомендациями «Строительных норм и правил» (СН и П) реагентные методы в основном используются для умягчения поверхностных вод, когда одновременно требуется и осветление воды.

Умягчение воды основанное на разных скоростях диффузии этих веществ через полупроницаемую мембрану , разделяющую концентрированный и разбавленный растворы. Умягчение воды методом диализа осуществляется в мембранных аппаратах с нитро- и ацетатцеллюлозными плёночными мембранами. В результате применения данного метода остаточная жёсткость воды составит до 0,01 мг/л и ниже. Отрицательной стороной метода диализа является высокая себестоимость мембранных аппаратов.

Магнитная обработка воды - распространена для борьбы с образованием накипи. Сущность метода состоит в том, что при пересечение водой магнитных силовых линий образователи накипи выделяются не на поверхности нагрева, а в массе воды. Образующиеся рыхлые осадки (шлам) удаляют при продувке.

Наибольшее практическое применение получил ионообменный метод умягчения воды. Сущность ионообменного метода заключается в способности ионообменных материалов (ионитов) поглощать из воды положительные или отрица-тельные ионы в обмен на эквивалентное количество ионов ионита. В зависимости от состава существуют минеральные и органические катиониты, которые, в свою очередь, разделяются на вещества естественного и искусственного происхождения. В технологии подготовки воды широко применяют органические катиониты искусственного происхождения, так называемые ионообменные смолы. Качество ионообменных смол характеризуется их физическими свойствами, химической и термической стойкостью, рабочей ёмкостью и др.В установках умягчения воды использует ионообменные смолы, основанные на применении катионита в Na-форме и анионита в Cl-форме, т.е. использует метод натрий - хлор-ионирования. Указанный метод состоит из следующих стадий: натрий-катионирования и хлор-катионирования. На стадии натрий-катионирования происходит замещение ионов кальция и магния, придающих воде жёсткость, на ионы натрия.

В результате обрабатываемая вода умягчается, а кальций и магний образуют нерастворимый полимер. При пропуске натрий-катионированной воды через хлор-аноион протекают реакции обмена анионов, содержащихся в Na- катионированной воде, на ионы хлора и щёлочность обрабатываемой воды снижается. Для восстановления свойств ионообменной смолы (регенерации) используется раствор поваренной соли. Таким образом, достигается глубокое умягчение воды (до 0,03 … 0,05 ммоль/л). При применении метода натрий - хлор-ионирования расходуется только один реагент - поваренная соль, не требуется антикоррозийной защиты оборудования, трубопроводов и специальной арматуры, уменьшается количество оборудования, упрощается контроль работы и эксплуатации водоумягчительной установки. В результате повышается надёжность и уменьшается стоимость установки для умягчения воды. Только пить постоянно такую умягченную

Под умягчением воды подразумевается процесс удаления из нее катионов жесткости, т.е. Са и Мg. Умягчение воды осуществляется следующими методами:

1) термическое умягчение, основанное на нагревании воды, ее дистилляции или вымораживанием;

2) реагентное, в котором находящиеся в воде ионы жесткости, связывают различными реагентами в практически нерастворимые соединения;

3) ионным обменом, основанным на фильтровании умягчаемой воды через специальные материалы, обменивающие входящие в их состав ионы натрия или водорода на катионы кальция и магния;

4) диализ;

5) комбинированный, представляющий различные сочетания перечисленных методов.

Выбор метода умягчения воды определяется ее качеством, необходимой глубиной умягчения и технико-экономическими соображениями.

Термический метод умягчения воды.

Целесообразно применять при использовании карбонатных вод, идущих на питание котлов низкого давления, а также в сочетании с реагентными методами умягчения воды. Он основан на смещении углекислотного равновесия при нагревании воды в сторону образования карбоната кальция

Са(НСО 3) 2 → СаСО 3 ↓+СО 2 + Н 2 О

Равновесие смещается за счет понижения растворимости СО 2 , вызываемого повышением температуры и давления. Кипячением можно полностью удалить СО 2 и тем самым значительно снизить карбонатную жесткость. Кроме того, снижается жесткость, определяемая сульфатом кальция. Однако, полностью удалить указанную жесткость не удается, поскольку карбонат кальция все же растворим в воде (18 мг/л). Применяется для этого метода – термоумягчитель. Время пребывания воды в нем 30-45 минут.

Реагентные методы умягчения.

Основаны на обработке воды реагентами, образующими с кальцием и магнием малорастворимые соединения Мg(ОН) 2 , СаСО 3 , Са 3 (РО 4) 2 и другие, с последующим их отделением в осветлителях. В качестве реагентов используется известь, кальцинированная сода, гидроксиды натрия, бария и другие вещества.

Умягчение воды известкованием применяют при высокой карбонатной и низкой некарбонатной жесткости. В качестве реагента используют известь, которую вводят в виде суспензии в предварительно подогретую воду. Растворяясь, известь обогащает воду ОН - и Са +2 ионами, что приводит к связыванию растворимого в воде СО 2 с образованием СО 3 -2 и переходу НСО 3 в СО 2 .

СО 2 + 2 ОН - →СО 3 -2 + Н 2 О; НСО3 - +ОН - → СО 3 –2 + Н 2 О

Повышение в обрабатываемой воде концентрации СО 3 –2 и присутствие в ней ионовСа +2 с учетом введенных с известью, приводит к осаждению СаСО 3

Са +2 + СО 3 –2 → СаСО 3 ↓.

Для ускорения процесса одновременно с известкованием применяют коагулирование.

Дозу извести определяют по формуле:

Д и = 28([СО 2 ] /22 +2 Ж к - [ Са +2 ]/20 +Д к /е к + 0.5)

Д к – доза коагулянта, е –эквивалентная масса активного вещества коагулянта,

Выражение Д к /е к – берут со знаком -, если коагулянт вводится ранее извести и +, если совместно или после.

Более глубокое умягчение воды может быть достигнуто ее подогревом, добавлением избытка реагента - осадителя и созданием контакта умягчаемой воды с ранее образовавшимся осадком.

Фосфатирование применяют для доумягчения воды. Остаточная жесткость снижается до 0.02-0.03 мг*экв /л. Фосфатированием достигается также большая стабильность воды, снижение ее коррозионного действия на металлические трубопроводы и предупреждаются отложения карбонатов на внутренней поверхности стенок труб. В качестве фосфатирующего реагента используется гексаметафосфат натрия, триполифосфат натрия. Фосфатный метод умягчения при использовании тринатрийфосфата является наиболее эффективным реагентным методом. Химизм процесса описывается уравнением:

3Са(НСО 3) 2 /3 Мg(НСО 3) 2 + 2 Nа 3 РО 4 = Са 3 (РО 4) 2 / Мg 3 (РО 4) 2 +6 NаНСО 3 .

Фосфатное умягчение осуществляется при подогреве воды до 105 –150 0 С. Образующиеся осадки Са 3 (РО 4) 2 и Мg 3 (РО 4) 2 хорошо адсорбируют их умягченной воды коллоиды и кремниевую кислоту, поэтому этот метод применяется для подготовки питательной воды для котлов среднего и высокого давления.

Умягчение воды диализом.

Диализ – метод разделения растворенных веществ, значительно отличающихся молекулярными массами. Он основан на разных скоростях диффузии этих веществ через полупроницаемую мембрану, разделяющую концентрированные и разбавленные растворы. Диализ осуществляется в мембранных аппаратах с нитро - и ацетатцеллюлозными мембранами. Эффективность полупроницаемой мембраны определяется высокими значениями селективности и водопроницаемости, которые она должна сохранять в течение продолжительного времени работы.

Магнитная обработка воды.

В настоящее время для борьбы с накипеобразованием и инкрустацией успешно применяют магнитную обработку воды. Ее суть заключается в действии магнитного поля на ионы солей, растворимых в воде. Под влиянием магнитного поля происходит поляризация и деформация ионов, сопровождающееся уменьшением их гидратации, повышающей вероятность их сближения и образование центров кристаллизации. Сущность метода состоит в том, что при пересечении водой магнитных силовых линий, накипеобразователи выделяются не на поверхности нагрева, а в массе воды. Образующиеся рыхлые осадки удаляют при продувке.

Умягчение воды катионированием.

Сущность ионного обмена заключается в способности ионитов поглощать из воды положительные и отрицательные ионы в обмен на эквивалентное количество ионов ионита. Процесс водообработки методом ионного обмена, в результате которого происходит обмен катионов – называют катионированием.

Катиониты в воде разбухают, увеличиваются в объеме. Энергия вхождения в катионит различных катионов по величине их динамической активности может быть охарактеризована следующим рядом:

Nа < NН 4+ < К + < Мg +2 < Са +2 < Аl +3

Е р = (Q* Ж и)/(а *h к), где Ж и – жесткость воды; Q – количество умягченной воды, м 3 ;

а – площадь катионитового фильтра, м 2 ; h к – высота слоя катионита, м.

Длительность работы фильтра определяется по формуле:

Т к = Е р * h к /V к *Ж и. где V к – скорость фильтрования воды.

В технике подготовки воды применяют органические катиониты. Они содержат функциональные химические активные группы, Н + которых способны замещаться другими катионами: четвертичные амины NН 3 ОН, сульфогруппы НSО 3 , карбоксильные группы СООН. Группа НSО 3 обладает сильнокислотными, а СООН – слабокислотными свойствами. В зависимости от содержания функциональных групп катиониты делят на слабокислотные и сильнокислотные. Сильнокислотные обменивают катионы в щелочной, нейтральной и кислой среде, слабокислотные – только в щелочной среде. Качество катионитов характеризуется их физическими свойствами, химической и термической стойкостью, рабочей обменной емкостью. Фракционный состав характеризует эксплуатационные свойства катионита. Рабочая обменная емкость зависит от вида извлекаемых катионов, соотношения солей в умягченной воде, рН, высоты слоя катионита, объема фильтра, режима эксплуатации, удельного расхода регенерирующего реагента.

Натрийкатионирование.

Этот метод применяется для умягчения воды с содержанием взвешенных веществ н/б 8 мг/л и цветности н/б 30 0 .Жесткость воды снижается при одноступенчатом катионировании до 0.05 –0.1, при двухступенчатом – до 0.01 мг*экв /л. Процесс натрийкатионирования описывается следующими уравнениями:

2 Nа[К] + Са(НСО 3) 2 / Мg(НСО 3) 2 ↔Са[К] 2 / Мg[К] 2 +2 NаНСО 3

2 Nа[К] + СаСl 2 / Мg Сl 2 ↔Са[К] 2 / Мg[К] 2 + 2 NаСl, где [К] – нерастворимая матрица полимера.

После истощения рабочей обменной емкости катионита он теряет способность умягчать воду и его необходимо регенерировать.

Процесс умягчения воды на катионитовых фильтрах состоит из следующих операций:

Фильтрование воды через слой катионита до момента достижения предельно допустимой жесткости в фильтрате;

Взрыхление слоя катионита восходящим потоком воды;

Спуска водяной подушки во избежание разбавления регенерационного раствора;

Регенерация катионита посредством фильтрования соответствующего раствора;

Отмывка катионита.

Выбор метода диктуется требованиями, предъявляемыми к умягченной воде, Свойствами исходной воды и технико-экономическими соображениями. Регенерация осуществляется 5% раствором хлористого натрия в количестве 1.2 м 3 раствора на 1 м 3 смолы, затем остаточное количество в виде 8% раствора. Процесс регенерации описывается следующей реакцией:

Са[К] 2 / Мg[К] 2 + 2 NаСl↔2 Nа[К] + СаСl 2 / Мg Сl 2

Хлористый натрий применяется из-за его доступности, дешевизны, а также вследствие того, что получают при этом хорошо растворимые соли СаСl 2 и МgСl 2 , легко удаляемые с регенерационным раствором и водой.

Водород-натрийкатионитовое умягчение воды.

Обработка воды Н-катионированием основана на фильтрации ее через слой катионита, содержащего в качестве обменных ионов водород.

2 Н[К] + Са(НСО 3) 2 / Мg(НСО 3) 2 ↔Са[К] 2 / Мg[К] 2 +2Н 2 О +СО 2

2 Н[К] + NаСl↔2 Nа[К] + НСl; 2 Н[К] +Nа 2 SО 4 ↔2 Nа[К] +Н 2 SО 4

При Н-катионировании воды значительно снижается ее рН из –за кислот, образующихся в фильтрате. Выделяющийся при Н-катионировании СО2 можно удалить дегазацией и в растворе останутся минеральные кислоты в количествах, эквивалентных содержанию SО 4 -2 и Сl - в исходной воде. Из приведенных реакций видно, что щелочность воды в процессе ионного обмена не изменяется. Следовательно, пропорционально смешивая кислый фильтрат после Н-катионитовых фильтров со щелочным фильтратом после Nа – катионитовых фильтров можно получить умягченную воду с различной щелочностью. В этом заключается сущность и преимущества Н- Nа – катионирования. Применяют параллельное, последовательное и смешанное Н- Nа – катионирования. При параллельном – 1 часть воды идет через Nа – катионитовый фильтр, другая – через Н-катионитовый. Образующиеся воды смешивают в таких пропорциях, чтобы щелочность не превышала 0.4 мг*экв/л. При последовательном – часть воды пропускают через Н-катионитовый, затем смешивают с остальной водой и подают на Nа – катионитовый фильтр. Это позволяет полнее использовать обменную емкость Н-катионита и снизить расход кислоты на регенерацию. Смешанное катионирование осуществляется в одном фильтре, загруженном вверху - Н-катионитом, внизу - Nа – катионитом.

Статья № 118

Процессы для умягчения воды


Процессы для умягчения воды


Большое количество информации порождает бессмыслицу и запутанность. Проблема, вместо того, чтобы быть решенной перерастает в дилемму. Это утверждение особенно справедливо для ситуации, сложившейся с жесткой водой и в тот момент, когда нужно определить процессы для умягчения воды . Что делать: проводить удаление накипи в котле или жесткая вода все-таки может быть использована? Наверное, ответ будет положительным и средство от накипи применять нужно. Ведь доказано, что известковый налет и отложения часто наносят сильный вред санитарной и бытовой технике.
С другой стороны есть информация о том, что, мол, даже вода из родников потому и вкусная, что там содержатся ионы кальция и магния (именно они, как вы помните, являются главной причиной образования накипи). Также многие врачи заявляют, что в нашей стране у каждого человека наблюдается недостаток кальция и магния в организме, что пагубно для здоровья и ведет к нарушениям в костной системе. Известно также, что именно вода, насыщенная «накипными» солями, является основным источником, из которого можно получить необходимые человеку вещества. Но, при этом, процессы для умягчения воды всё же необходимы.
С одной стороны умягчение воды будто бы не требуется, а с другой – как же тогда уберечь бытовую технику? Между тем, примеров удивительных свойств применения мягкой воды огромное множество: только из мягкой воды готовят чешское пиво лучших сортов, а чай и кофе становятся более ароматными и вкусными. Если вы были в турецком отеле, то наверняка помните, насколько ваша кожа была приятна на ощупь после посещения душа. Это происходит потому, что там используется умягчитель воды для котла и труб .
Перейдем от теории к практике. В России один человек в среднем расходует на себя около 300-400 литров воды, из которых основная часть приходится на бытовые нужды, и только около 5-10 литров мы тратим на приготовление пищи. Что касается питья, то здесь цифры еще меньше – мы выпиваем всего 1-2 литра.
В связи с этим напрашивается будто бы единственное правильное решение – для питьевой воды приобретать жесткую воду (покупать в бутылках), а для техники использовать умягчитель воды. Пожалуй, это самое лучший способ, который позволит избежать постоянных технических поломок, облегчит и разгрузит систему водоснабжения от заторов и позволит сэкономить на моющих средствах. Но сделать это не так легко, как кажется, особенно в нашей стране. Процессы для умягчения воды бывают разными.
Конечно, коммунальные службы делают все возможное для того, чтобы предварительно очистить воду, но, по сути, от них мало что зависит, их умягчение воды лишь поверхностное. Жесткая вода поступает в квартиры граждан практически напрямую, не проходя необходимой очистки. Ни одно средство от накипи при этом не используется.
Совсем другая ситуация сложилась в зарубежных странах, где процесс поступления воды и очистка от накипи очень хорошо организованы. На Западе водоподготовка продумана до мелочей, ведь там действительно очищают воду, но далеко не всю. Разводка коммуникаций проектируется таким способом, что мягкая вода подается лишь в систему горячего водоснабжения. Это позволяет увеличить срок службы котла и минимизирует производимые затраты.
Очистка от накипи котла и теплообменника , этот процесс умягчения воды происходит благодаря тому, что в котловый контур поступает умягченная вода. При этом вода, находящаяся в системе холодного водоснабжения, не подвергается обработке – жесткая вода подается в первозданном виде. Но здесь есть одна хитрость. Дело в том, что поступающая горячая вода смешивается с холодной и дает на выходе 1,5-2 мг-экв/л. Однако такое средство от накипи используется не всегда. К примеру, для воды в сливных бочках унитаза, а также воды, предназначенной для полива газонов, обработка не применяется.
Итак, с теорией и заграничной практикой по проведению процессов для умягчения воды и комплекса таких действий, как водоподготовка, мы знакомы. Что же делать нам, в наших российских условиях для того, чтобы как можно более эффективно и без особых затрат добиться, чтобы происходило естественное удаление накипи и снижение жёсткости воды ?

Сочетание процессов для умягчения воды

Для этого, в первую очередь, желательно быть в курсе того, какова жесткость именно вашей воды. Если хотите узнать, то сделать это так просто не получится – придется отнести анализ воды на пробу в специальную лабораторию, где определяют пригодность воды. Существует классификация, согласно которой, вода с жесткостью 1,5-3 мг-экв/л считается мягкой, с показателями в 3-6 мг-экв/л – умеренно жесткой. Действительно жесткая вода содержит от 6 до 9 мг-экв/л катионов солей. В соответствии с ГОСТ – вода, которая поступает из крана, должна содержать 7 мг-экв/л катионов солей. Сочетание процессов для умягчения воды позволит максимально снизить жёсткость.
Следует заметить, что этот параметр – 7 мг-экв/л выводился без учета потребностей людей, исходя из времени выхода из строя труб. Трубопроводная система изнашивается гораздо быстрее при воде с жесткостью выше 7 мг-экв/л. Получается, что все существующие нормы были введены, во избежание зарастания известью и предупреждения скорого вывода трубопровода из строя.
Однако чтобы не мучить себя, нужен ли вам умягчитель воды, можно определить уровень содержания солей на глаз. Однако, это не так эффективно, как сочетание процессов для умягчения воды, например с разными средствами от накипи. От жесткой воды на душевом рассеивателе остается известковый налет, а кожа после водных процедур часто сохнет, шелушится, становясь при этом грубой. Количество накипи, которая остается после кипячения воды в чайнике, ни о чем не говорит, поскольку она остается даже при использовании умягченной воды.
Возвращаемся к поставленной проблеме: как же решить ее наиболее эффективным образом – так, чтобы сэкономить финансы и уберечь технику?
На данный момент существует множество способов по проведению такой процедуры, как водоподготовка. Самым простым из них всегда было и остается обычное кипячение. Такое умягчение воды эффективно при карбонатной жесткости (временная жесткость). Гидрокарбонат при термическом воздействии выпадает в осадок, выделяется углекислый газ. Данный метод используют не только в быту, но и в промышленности. Он особенно результативен при наличии дарового тепла.
Помимо этого, иногда используются реагентные методы. В процессе умягчения воды и воздействия химвеществ соли кальция переводятся в нерастворимые соединения, которые впоследствии образуют осадок. Сфера применения – станции муниципальной подготовки воды. Удаление накипи происходит при добавлении гашеной извести и соды. Это устраняет мутные взвеси, а также способствует умягчению воды.
Однако, сочетание процессов для умягчения воды и воздействие реагентами имеет весомые недостатки, которые не позволяют использовать этот метод в домашних условиях. Во-первых, нужна точная дозировка веществ. Во-вторых, их надо где-то хранить. В-третьих, очистка от накипи оставляет большое количество твердых отходов.
В древности воду смягчали, добавляя в нее печную золу. Не менее эффективный способ – добавление соды, в пропорциях 1-2 чайные ложки на ведро воды. Это, конечно, решает проблему, но не в таких масштабах, в каких нам нужно. Плюс ко всему, это требует времени и наличия необходимых элементов. Мы же выяснили, что человек потребляет около 300 литров воды в день – а это много для того, чтобы каждый раз добавлять в воду соду, кипятить ее или смешивать с золой.
Следующими способами являются электродиализ и обратный осмос. Методы используются при обессоливании, смягчении и подготовке воды к питью. Довольно широко используется способ умягчения воды, основанный на ионообменных смолах, в ходе которого происходит обмен «жестких» ионов на ионы натрия смолы. Регенерация смолы, полученной в ходе ионного обмена, осуществляется при использовании раствора поваренной соли. Импортные смягчители изготовлены в виде напорного бака, имеющего высокую прочность. Ионообменная смола находится внутри такого баллона.
Сейчас существует множество различного оборудования, предназначенного для умягчения воды. Однако наиболее мобильным, эффективным и практически безотходным являются электромагнитные умягчители. По сравнению с теми же процессами для умягчения воды и осмосными и ионообменными установками, они гораздо дешевле, компактнее и не создают никакого шума, а также не имеют побочных эффектов. Важный параметр – это время очистки и объем воды, который может быть очищен за определенный промежуток времени. По сравнению с существующими аналогами, электромагнитный умягчитель и здесь показывает самые лучшие результаты. Сочетание процесса для умягчения воды с другими процессами, даёт наилучший результат.

» и перейти дальше, осталось разобраться с одним-единственным оставшимся способом умягчения воды как такового. Он называется «термический способ умягчения воды «. Естественно, останутся другие технологии, например, технология обратного осмоса или нанофильтрации, которые также работают с жёсткостью воды. Но именно на специфических способах борьбы именно с жёсткой водой мы закончим подраздел .

Термический способ умягчения воды — это способ, при котором из воды удаляетя временная жёсткость (подробнее про временную жёсткость — в статьях «Жёсткая вода » и « «) с помощью нагрева воды. То есть, для умягчения применяются именно те процессы, которые приводят к образованию накипи в обычных условиях. Другими словами, образование накипи тут — желательное явление.

На самом деле термическим способом умягчения воды вы пользуетесь почти что с детства — как раз с того возраста, когда вы научились ставить чайник на огонь. Другими словами, когда вы кипятите воду в чайнике, вы делаете так, чтобы часть солей жёсткости выпадала в осадок в виде накипи на чайнике. В результате вы пьёте чай с более мягкой водой, чем течёт из крана.

Соответственно, может возникнуть вопрос: «А сколько нужно времени кипятить воду, чтобы достичь нужного уровня мягкости воды?» Для того, чтобы ответить на него, нужно немного подумать.

Так, растворимость солей жёсткости падает с ростом температуры. Соответственно, чем выше температура, тем быстрее они выпадут в осадок. И чем дольше происходит обработка, тем полнее будет термическое умягчение воды. Соли жёсткости выпадают в осадок при нагревании по реакции (на примере гидрокарбоната кальция):

С точки зрения химического равновесия, чем быстрее будет улетучиваться углекислый газ, тем быстрее будут выпадать в осадок соли жёсткости. То есть, первый практический совет:

При термическом способе умячгения воды не полностью закрывайте крышку чайника (кастрюли), чтобы углекислый газ мог свободно улетучиваться.

Соответственно, если вы оставляете крышку закрытой, то углекислый газ не может свободно улетучиваться и замедляет скорость выпадения солей жёсткости в осадок. С другой стороны, полностью открытая ёмкость при кипячении приведёт к быстрому испарению воды, что не очень хорошо, поскольку при этом растёт общее содержание солей и вкус воды ухудшается.

Таким образом, нужно найти оптимальное положение крышки на чайнике для вашей собственной жёсткой воды.

Далее, второе следствие из реакции термического осаждения солей жёсткости с точки зрения химического равновесия — чем больше солей жёсткости (т.е. чем выше жёсткость воды), тем быстрее будет происходить выпадение в осадок. То есть, практический вывод таков:

если у ваша вода имеет жёсткость меньше 4 мг-экв/л (4 ммоль/л), то термически умягчать такую воду не стоит.

Всё потому, что осаждение солей жёсткости будет происходить слишком медленно, и испариться слишком много воды, отчего вкус её может ухудшиться (что для себя определяет каждый отдельно взятый человек, поскольку на вкус и цвет товарища нет).

Конечно, мы обещали назвать точное время, за которое все соли жёсткости выпадут в осадок. К сожалению, так просто называть это время нельзя, потому что очень сложно учесть все параметры — и температуру воды, и жёсткость воды, и то, насколько открыта крышка, и как много в воде углекислого газа и т.д.

Кстати, помимо этих химических параметров важен ещё один — площадь поверхности .

Так, чем больше площадь поверхности, на которой может образовываться накипь, тем полнее произойдёт термическое умягчение воды.

И, если вы пользуетесь чайником, и площадь его стенок и дна, контактирующая с водой, составляет 30 квадратных сантиметров, то вы получите минимально возможное при остальных усовиях умягчение. Но если вы увеличите площадь поверхности, контактирующей с водой, вдвое — примерно так же вырастет эффективность умягчения воды, а, значит, и времени обработки.

Также нужно учитывать, что если вы только начали умягчать воду термически в новом чайнике, то за счёт того, что на гладкой поверхности солям жёсткости менее «удобно» кристаллизоваться, то по-началу умягчение будет происходить не так эффективно, как в последствии, когда на стенках образуется хороший слой накипи.

Мы можем назвать примерное время термического умягчения воды для жёсткости в районе 7 мг-экв/л. Это время составляет 2-3 минуты (без учёта дополнительной площади поверхности и с толстым слоем накипи).

Соответственно, должен возникнуть вопрос: «А как можно самостоятельно определить, сколько нужно кипятить воду для её умягчения?» Ответ на этот вопрос прост:

для определения длительности термического умягчения воды нужно провести эксперимент.

Эксперимент будет состоять в том, что вы одинаковый обЪём воды (например, стакан) будете кипятить разное время (в чайнике с примерно одинаковым слоем накипи и площадью поверхности). И оценивать вкус получившейся кипячёной и охлаждённой воды. Охладить воду до комнатной температуры перед пробой нужно обязательно, поскольку вкус горячей воды человек распознаёт очень плохо.

Также нужно учесть, что кипевшая определённое время вода, разлитая в последствии по ёмкостям для охлаждения, должна быть закрыта! Иначе в воде растворится кислород, что изменит вкус воды — будет ощущаться вкус кислорода (сладковатый), а не собственно мягкой воды.

При дегустации нужно иметь контрольный стакан — с исходной, некипячёной водой. Воду глотать необязательно, достаточно её подержать во рту, а потом выплюнуть. После каждой пробы воды полощите рот исходной, термически не умягчённой водой. Свои ощущения записывайте — разница может быть настолько тонка, что будет теряться после нескольких повторов.

Например, процедура дегустации воды после термического умягчения для определения оптимального времени воздействия такова:

  1. Попробовать воду из одного стакана и записать баллы вкуса для этого стакана.
  2. Прополоскать рот исходной неумягчённой термически водой.
  3. Попробовать второй стакан и записать баллы вкуса для него.
  4. Прополоскать рот неумягчённой водой

И т.д., сделав минимум по три повтора. В итоге каждая умягчённая проба будет иметь минимум по три оценки. Выводится среднее значение и выбирается оптимальное время!

Определение времени термического умягчения воды можно сделать более точным. Для этого понадобится прибор — TDS-метр, или солемер. Этот прибор измеряет, каково общее содержание солей в воде (в том числе солей жёсткости). Соотвественно, если после термического способа умягчения воды соли жёсткости частично выпали в осадок, то прибор покажет уменьшение общего содержания солей.

Кроме того, поскольку прибор меряет не жёсткость воды, а именно общее содержание солей, то можно определить тот момент, когда кипячение не сколько убирает временную жёсткость воды, сколько увеличивает общее содержание солей за счёт испарения воды.

Естественно, показания прибора лучше всего проверить на вкус — а то мало ли что он показывает 🙂

При покупке солемера нужно приобретать прибор с температурным компенсатором. Иначе в воде разной температуры, но одинакового содержания солей он будет давать разные значения. Ну и вообще солемер — это полезный прибор, им можно определять не только эффективность термического умягчения воды, но и эффективность работы для воды вообще.

Кстати, важное замечание: если вы пользуетесь фильтром для питься с ионообменной смолой или фильтром, работающим по технологии нанофильтрации или обратного осмоса, или дистиллятором или ещё каким-нибудь фильтром, значительно уменьшающим общее содержание солей или жёсткость воды, то в термическом способе умягчения воды нет необходимости.

Итак, термический способ умягчения воды доступен каждому — остаётся лишь выбрать оптимальную длительность умягчения.