Мастер-класс «Занимательные опыты по физике из подручных материалов. Проект по физике " физический эксперимент в домашних условиях"

Эксперимент – один из самых информативных способов познания. Благодаря ему удается получить разнообразные и обширные звания о исследуемом явлении или системе. Именно эксперимент играет фундаментальную роль в физических исследованиях. Красивые физические эксперименты надолго остаются в памяти последующих поколений, а также способствуют популяризации физических идей в массах. Приведем наиболее интересные физические эксперименты по мнению самих физиков из опроса Роберта Криза и Стони Бука.

1. Эксперимент Эратосфена Киренского

Этот эксперимент по праву считают одним из самых древних на сегодняшний день. В третьем веке до н.э. библиотекарь Александрийской библиотеки Эрастофен Киренский интересным способом измерил радиус Земли. в день летнего солнцестояния в Сиене солнце находилось в зените, в результате чего теней от предметов не наблюдалось. В 5000 стадиях к северу в Александрии в тоже время Солнце отклонилось от зенита на 7 градусов. Отсюда библиотекарь получил информацию, что окружность Земли 40 тысяч км., а её радиус равен 6300 км. Эрастофен получил показатели всего на 5% меньше сегодняшних, что для использованных им древних измерительных приборов просто поразительно.

2. Галилео Галилей и его самый первый эксперимент

В XVII веке Теория Аристотеля была главенствующей и беспрекословной. Согласно этой теории скорость падения тела непосредственно зависела от его веса. Примером служили перо и камень. Теория была ошибочной, так как в ней не учитывалось сопротивление воздуха.

Галилео Галилей в этой теории усомнился и решил провести серию экспериментов лично. Он взял большое пушечное ядро и запустил его с Пизанской башни, в паре с легкой пулей для мушкета. Учитывая их близкую обтекаемую форму можно было легко пренебречь сопротивлением воздуха и конечно же оба предмета приземлялись одновременно, опровергая теорию Аристотеля. считает, что нужно лично съездить в Пизу и выбросить что-нибудь похожее внешне и разное по весу с башни, дабы почувствовать себя великим ученым.

3. Второй эксперимент Галилео Галилея

Вторым утверждением Аристотеля было то, что тела под действием силы движутся с постоянной скоростью. Галилей запускал металлические шары по наклонной плоскости и фиксировал пройденное ими за определенное время расстояние. Затем он увеличил время в два раза, но шары за это время проходили в 4 раза большее расстояние. Таким образом зависимость была не линейная, то есть скорость не постоянная. Отсюда Галилей сделал вывод о ускоренном движении под действием силы.
Эти два эксперимента послужили основой для создания классической механики.

4. Эксперимент Генри Кавендиша

Ньютон является собственником формулировки закона всемирного тяготения, в которой присутствует гравитационная постоянная. Естественно возникла проблема нахождения её числового значения. Но для этого нужно было бы измерить силу взаимодействия между телами. Но проблема в том, что сила притяжения достаточно слабая, нужно было бы использовать или гигантские массы, или малые расстояния.

Джону Мичеллу далось придумать, а Кавендишу провести в 1798 году достаточно интересный эксперимент. В качестве измерительного прибора выступали крутильные весы. На них на коромысле были закреплены шарики на тонких веревочках. На шарики прикрепили зеркальца. Затем к маленьким шарикам подносили очень большие и тяжелые и фиксировали смещении по световым зайчикам. Результатом серии опытов стало определение значения гравитационной постоянной и массы Земли.

5. Эксперимент Жана Бернара Леона Фуко

Благодаря большущему (67 м) маятнику, который был установлен в парижском Пантеоне Фуко в 1851 году методом эксперимента довел факт вращения Земли вокруг оси. Плоскость вращения маятника остается неизменной по отношению к звездам, но наблюдатель вращается вместе с планетой. Таким образом можно увидеть как постепенно смещается в сторону плоскость вращения маятника. Это достаточно простой и безопасный эксперимент, в отличие от того, о котором мы писали в статье

6. Эксперимент Исаака Ньютона

И снова проверялось утверждение Аристотеля. Бытовало мнение, что различные цвета являются смесями в разной пропорции света и тьмы. Чем больше тьмы, тем ближе цвет к фиолетовому и наоборот.

Люди уже давно заметили, что большие монокристаллы разлагают свет на цвета. Серии опытов с призмами проделали чешский естествоиспытатель Марции английский Хариот. Новую серию начал Ньютон в 1672 году.
Ньютон ставил физические эксперименты в темной комнате, пропуская тонкий луч света через маленькую дырочку в плотных шторах. Этот луч попадал на призму и раскладывался на цвета радуги на экране. Явление было названо дисперсией и позже теоретически обосновано.

Но Ньютон пошел дальше, ведь его интересовала природа света и цветов. Он пропускал лучи через две призмы последовательно. На основании этих своих опытов, Ньютон сделал вывод о том, что цвет не является комбинацией света и тьмы, и тем более не есть атрибутом предмета. Белый свет состоит из всех цветов, которые можно увидеть при дисперсии.

7. Эксперимент Томаса Юнга

Вплоть до XIX века главенствовала корпускулярная теория света. Считалась, что свет как и материя состоит из частиц. Томас Юнг, английский врач и физик, в 1801 году провел свой эксперимент для проверки этого утверждения. Если предположить, что свет имеет волновую теорию, то должно наблюдаться такое же взаимодействующие волны, как и при броске двух камней на воду.

Для имитации камней Юнг использовал непрозрачный экран с двумя отверстиями и источникам света за ним. Свет проходил через отверстия и на экране образовывался рисунок из светлых и темных полос. Светлые полосы образовывались там, где волны усиливали друг друга, а темные там, где тушили.

8. Клаус Йонссон и его эксперимент

В 1961 году Немецкий физик Клаус Йонссон доказал, что элементарные частицы имеют корпускулярно-волновую природу. Он провел для этого эксперимент аналогичный эксперименту Юнга, только заменив лучи света пучками электронов. В результате все равно удалось получить интерференционную картину.

9. Эксперимент Роберта Милликена

Еще в начале девятнадцатого века возникло представление о наличии у каждого тела электрического заряда, который является дискретным и определяется неделимыми элементарными зарядами. К тому моменту было введено понятие электрона, как носителя этого самого заряда, но обнаружить экспериментально эту частицу и вычислить ее заряд не удавалось.
Американскому физику Роберт Милликен удалось разработать идеальный образчик изящества в экспериментальной физике. Он изолировал заряженные капли воды между пластинами конденсатора. Затем с помощью рентгеновских лучей ионизировал воздух между этими же пластинами и менял заряд капель.

Можно применять на уроках физики на этапах постановки цели и задач урока, создании проблемных ситуаций при изучении новой темы, применении новых знаний при закреплении. Презентацию «Занимательные опыты» можно использовать учащимися для подготовки опытов в домашних условиях, при проведении внеклассных мероприятия по физике.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Предварительный просмотр:

Муниципальное Бюджетное Общеобразовательное Учреждение

"Гимназия № 7 имени Героя России С. В. Василева"

Научная работа

«Занимательные физические опыты

из подручных материалов»

Выполнил: ученик 7а класса

Корзанов Андрей

Учитель: Балесная Елена Владимировна

г. Брянск 2015 год

  1. Введение «Актуальность темы» ……………………………3
  2. Основная часть ………………………………………………...4
  1. Организация исследовательской работы………………...4
  2. Опыты по теме «Атмосферное давление»……………….6
  3. Опыты по теме «Теплота»…………………………………7
  4. Опыты по теме «Электричество и магнетизм»…………...7
  5. Опыты по теме «Свет и звук»……………………………...8
  1. Заключение ……………………………………………………...10
  2. Список изученной литературы ……………………………….12
  1. ВВЕДЕНИЕ.

Физика – это не только научные книги и сложные законы, не только огромные лаборатории. Физика – это еще интересные эксперименты и занимательные опыты. Физика – это фокусы, показанные в кругу друзей, это смешные истории и забавные игрушки-самоделки.

Самое главное, для физических опытов можно использовать любой подручный материал.

Физические опыты можно делать с шарами, стаканами, шприцами, карандашами, соломинками, монетами, иголками и т.д.

Опыты повышают интерес к изучению физики, развивают мышление, учат применять теоретические знания для объяснения различных физических явлений, происходящих в окружающем мире.

При проведении опытов приходится не только составлять план его осуществления, но и определять способы получения некоторых данных, самостоятельно собирать установки и даже конструировать нужные приборы для воспроизведения того или иного явления.

Но, к сожалению, из-за перегруженности учебного материала на уроках физики занимательным опытам уделяется недостаточное внимание, большое внимание уделяется теории и решению задач.

Поэтому было решено провести исследовательскую работу по теме «Занимательные опыты по физике из подручных материалов».

Цели исследовательской работы следующие:

  1. Освоить методики физических исследований, овладеть навыками правильного наблюдения и техникой физического эксперимента.
  2. Организация самостоятельной работы с различной литературой и другими источниками информации, сбор, анализ и обобщение материала по теме исследовательской работы.
  3. Научить учащихся применять научные знания для объяснения физических явлений.
  4. Привить любовь учащимся школы к физике, концентрация их внимания на понимании законов природы, а не на механическом их запоминании.
  5. Пополнение кабинета физики самодельными приборами, изготовленными из подручных материалов.

При выборе темы исследования мы исходили из следующих принципов:

  1. Субъективность – выбранная тема соответствует нашим интересам.
  2. Объективность – выбранная нами тема актуальна и важна в научном и практическом отношении.
  3. Посильность – задачи и цели, поставленные нами в работе, реальны и выполнимы.
  1. ОСНОВНАЯ ЧАСТЬ.

Исследовательская работа проводилась по следующей схеме:

  1. Постановка проблемы.
  2. Изучение информации из разных источников по данной проблеме.
  3. Выбор методов исследования и практическое овладение ими.
  4. Сбор собственного материала – комплектование подручных материалов, проведение опытов.
  5. Анализ и обобщение.
  6. Формулировка выводов.

В ходе исследовательской работы применялись следующие физические методики исследований :

I. Физический опыт

Проведение опыта состояло из следующих этапов:

  1. Уяснение условий опыта.

Этот этап предусматривает знакомство с условиями проведения эксперимента, определение перечня необходимых подручных приборов и материалов и безопасных условий при проведении опыта.

  1. Составление последовательности действий.

На этом этапе намечался порядок проведения опыта, в случае необходимости добавлялись новые материалы.

  1. Проведение опыта.

II. Наблюдение

При наблюдении за явлениями, происходящими в опыте, мы обращали особое внимание на изменение физических характеристик (давления, объема, площади, температуры, направления распространения света и т.д.), при этом мы получали возможность обнаруживать закономерные связи между различными физическими величинами.

III. Моделирование.

Моделирование является основой любого физического исследования. При проведении опытов мы моделировали изотермическое сжатие воздуха, распространение света в различных средах, отражение и поглощение электромагнитных волн, электризацию тел при трении.

Всего нами моделировано, проведено и научно объяснено 24 занимательных физических опытов.

По итогам научно-исследовательской работы можно сделать следующие выводы:

  1. В различных источниках информации можно найти и самим придумать много занимательных физических опытов, выполняемых с помощью подручного оборудования.
  2. Занимательные опыты и самодельные физические приборы увеличивают спектр демонстраций физических явлений.
  3. Занимательные опыты позволяют проверить законы физики и теоретические гипотезы, имеющие принципиальное значение для науки.

ТЕМА «АТМОСФЕРНОЕ ДАВЛЕНИЕ»

Опыт №1. «Шарик не сдувается»

Материалы: Трехлитровая стеклянная банка с крышкой, соломинка для коктейля, резиновый шар, нитка, пластилин, гвоздик.

Последовательность действий

С помощью гвоздика сделай в крышке банки 2 отверстия – одно центральное, другое на небольшом расстоянии от центрального. Через центральное отверстие пропусти соломинку и заделай отверстие пластилином. К концу соломинки с помощью нитки привяжи резиновый шар, закрой крышкой стеклянную банку, при этом конец соломинки с шаром должен быть внутри банки. Для устранения перемещения воздуха место контакта крышки и банки заделай пластилином. Надуй резиновый шарик через соломинку, шарик сдувается. А теперь надуй шарик и закрой второе отверстие в крышке пластилином, шарик сначала сдувается, а потом перестает сдуваться. Почему?

Научное объяснение

В первом случае при открытом отверстии давление внутри банки равно давлению воздуха внутри шара, поэтому под действием силы упругости растянутой резины шарик сдувается. Во втором случае при закрытом отверстие воздух не выходит из банки, по мере сдувания шарика объем воздуха увеличивается, давление воздуха уменьшается и становится меньше давления воздуха внутри шара, сдувание шарика прекращается.

По данной теме проведены следующие опыты:

Опыт №2. «Равновесие давления».

Опыт №3. «Воздух брыкается»

Опыт №4. «Приклеенный стакан»

Опыт №5. «Подвижный банан»

ТЕМА «ТЕПЛОТА»

Опыт №1. «Мыльный пузырь»

Материалы: Маленький флакон из-под лекарства с пробкой, чистый стержень от шариковой ручки или соломинка от коктейля, стакан с горячей водой, пипетка, мыльная вода, пластилин.

Последовательность действий

В пробке флакона из-под лекарства проделай тонкое отверстие и вставь в него чистый стержень шариковой ручки или соломинку. Место, где стержень вошел в пробку, облепи пластилином. Пипеткой наполни стержень мыльной водой, опусти флакон в стакан с горячей водой. С наружного конца стержня начнут подниматься мыльные пузырьки. Почему?

Научное объяснение

При нагревании флакончика в стакане с горячей водой, воздух внутри флакона нагревается, его объем увеличивается, при этом надуваются мыльные пузыри.

По теме «Теплота» проведены следующие опыты:

Опыт №2. «Несгораемый платок»

Опыт №3. «Лед не плавится»

ТЕМА «ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ»

Опыт №1. «Измеритель тока – мультиметр»

Материалы: 10 метров изолированного медного провода 24 калибра (диаметр 0,5мм, сечение 0,2 мм 2 ), машинка для зачистки проводов, широкая липкая лента, швейная игла, нитка, сильный стержневой магнит, банка из-под сока, гальванический элемент «D».

Последовательность действий

Зачисти провод с обоих концов от изоляции. Намотай провод вокруг банки плотными витками, оставив свободными концы провода на 30 см. Сними получившуюся катушку с банки. Чтобы катушка не разваливалась, в нескольких местах обмотай ее липкой лентой. Прикрепи катушку вертикально к столу с помощью большого куска липкой ленты. Намагнить швейную иголку, проведя ей по магниту, по крайней мере, четыре раза в одном направлении. Обвяжи иголку ниткой посередине так, чтобы иголка висела в равновесии. Свободный конец нитки прилепи внутрь катушки. Намагниченная игла должна спокойно висеть внутри катушки. Присоедини свободные концы провода к положительной и отрицательной клеммам гальванического элемента. Что произошло? А теперь поменяй полярность. Что произошло?

Научное объяснение

Вокруг катушки с током возникает магнитное поле, вокруг намагниченной иголки, также возникает магнитное поле. Магнитное поле катушки с током действует на намагниченную иголку и поворачивает ее. Если поменять полярность, то направление тока меняется на противоположное, иголка поворачивается в противоположную сторону.

Кроме того, по данной теме проведены следующие опыты:

Опыт №2. «Статический клей».

Опыт №3. «Фруктовая батарейка»

Опыт №4. «Антигравитационные диски»

ТЕМА «СВЕТ И ЗВУК»

Опыт №1. «Мыльный спектр»

Материалы: Мыльный раствор, ершик для чистки курительной трубки (или кусок толстой проволоки), глубокая тарелка, карманный фонарик, липкая лента, лист белой бумаги.

Последовательность действий

Согни ершик для трубки (или кусок толстой проволоки) так, чтобы он образовал петлю. Не забудь сделать небольшую ручку, чтобы удобнее было держать. Налей мыльный раствор в тарелку. Погрузи петлю в мыльный раствор и дай ей как следует пропитаться мыльным раствором. Через несколько минут аккуратно вынь ее. Что ты видишь? Видны ли цвета? Прикрепи лист белой бумаги к стене с помощью липкой ленты. Выключи свет в комнате. Включи фонарь и направь его луч на петлю с мыльной пеной. Расположи фонарь так, чтобы петля отбрасывала тень на бумагу. Опиши полнившуюся тень.

Научное объяснение

Белый свет является сложным светом, он состоит из 7 цветов – красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Это явление называется интерференцией света. При прохождении через мыльную пленку, белый свет распадается на отдельные цвета, различные световые волны на экране образуют радужную картину, которая называется сплошным спектром.

По теме «Свет и звук» были проведены и описаны следующие опыты:

Опыт №2. «На краю пропасти».

Опыт №3. «Шутки ради»

Опыт №4. «Пульт дистационного управления»

Опыт №5. «Копировальное устройство»

Опыт №6. «Появление из ниоткуда»

Опыт №7. «Цветная юла»

Опыт №8. «Прыгающие зерна»

Опыт №9. «Наглядный звук»

Опыт №10. «Выдуваем звук»

Опыт №11. «Переговорное устройство»

Опыт №12. «Кукарекающий стакан»

  1. ЗАКЛЮЧЕНИЕ

Анализируя результаты занимательных опытов, мы убедились, что школьные знания вполне применимы для решения практических вопросов.

С помощью опытов, наблюдений и измерений были исследованы зависимости между различными физическими величинами

Объемом и давлением газов

Давлением и температурой газов

Числом витков и величиной магнитного поля вокруг катушки с током

Силой тяжести и силой атмосферного давления

Направлением распространения света и свойствами прозрачной среды.

Все явления, наблюдаемые при проведении занимательных опытов, имеют научное объяснение, для этого мы использовали фундаментальные законы физики и свойства окружающей нас материи – II закон Ньютона, закон сохранения энергии, закон прямолинейности распространения света, отражение, преломление, дисперсия и интерференция света, отражение и поглощение электромагнитных волн.

В соответствии с поставленной задачей все опыты проведены с использованием только дешевых, малогабаритных подручных материалов, при их проведении изготовлено 8 самодельных приборов, в том числе магнитная стрелка, копировальное устройство, фруктовая батарейка, измеритель тока – мультиметр, переговорное устройство, опыты безопасные, наглядные, простые по конструкции.

СПИСОК ИЗУЧЕННОЙ ЛИТЕРАТУРЫ

* - Поля обязательные к заполнению.


БОУ «Косковская СШ»

Кичменгско-Городецкого муниципального района

Вологодской области

Учебный проект

«Физический эксперимент в домашних условиях»

Выполнили:

ученики 7 класса

Коптяев Артем

Алексеевская Ксения

Алексеевская Таня

Руководитель:

Коровкин И.Н.

Март-апрель-2016 год.

Содержание

Введение

В жизни нет ничего лучше собственного опыта.

Скотт В.

В школе и дома мы познакомились со множеством физических явлений и нам захотелось изготовить самодельные приборы, оборудование и провести опыты. Все проводимые нами опыты позволяют глубже познать окружающий мир и в частности физику. Мы описываем процесс изготовления оборудования для эксперимента, принцип работы и физический закон или явление демонстрируемое данным прибором. Проводимые эксперименты заинтересовали учащихся из других классов.

Цель: изготовить прибор из имеющихся подручных средств для демонстрации физического явления и с его помощью рассказать о физическом явлении.

Гипотеза: изготовленные приборы, демонстрации помогут познать физику глубже.

Задачи:

Изучить литературу по проведению опытов своими руками.

Просмотреть видео по демонстрации опытов

Изготовить оборудование для опытов

Провести демонстрацию

Рассказать о демонстрируемом физическом явлении

Улучшить материальную базу кабинета физика.

ОПЫТ 1. Модель фонтана

Цель : показать простейшую модель фонтана.

Оборудование : пластиковая бутылка, трубочки от капельницы, зажим, воздушный шар, кювета.

Готовое изделие

Ход проведения опыта:

    В пробке проделаем 2 отверстия. Вставим трубочки, к концу одной прикрепим шарик.

    Наполним воздухом шарик и закроем зажимом..

    Нальем в бутылку воды и поставим ее в кювету.

    Пронаблюдаем за струей воды.

Результат: наблюдаем образование фонтана воды.

Анализ: на воду в бутылке действует сжатый воздух, находящийся в шарике. Чем больше воздуха в шарике, тем выше будет фонтан.

ОПЫТ 2. Картезианский водолаз

(Закон Паскаля и Архимедова сила.)

Цель: продемонстрировать закон Паскаля и силу Архимеда.

Оборудование: пластиковая бутылка,

пипетка(сосуд закрытый с одного конца)

Готовое изделие

Ход проведения опыта:

    Возьмите пластиковую бутылку емкостью 1,5-2 л.

    Возьмите маленький сосуд (пипетку)и огрузите ее медной проволокой.

    Бутылку заполните водой.

    Надавите руками на верхнюю часть бутылки.

    Наблюдайте явление.

Результат : наблюдаем погружение пипетки и всплытие при надавливании на пластиковую бутылку..

Анализ : сила сжимет воздух над водой,давление передается воде.

По закону Паскаля давление сжимает воздух в пипетке. В результате Архимедова сила уменьшается. Тело тонет.Прекращаем сжатие. Тело всплывает.

ОПЫТ 3. Закон Паскаля и сообщающиеся сосуды.

Цель: продемонстрировать действие закона Паскаля в гидравлических машинах.

Оборудование: два шприца разного объема и пластиковая трубка от капельницы.

Готовое изделие.

Ход проведения опыта:

1.Возьмите два шприца разного размера и соедените трубочкой от капельницы.

2.Заполните несжимемой жидкостью (водой или маслом)

3.Надавите на поршень меньшего шприца.Наблюдайте премещение поршня большего шприца.

4.Надавите на поршень больше шприца.Наблюдайте премещение поршня меньшего шприца.

Результат : Фиксируем различие прилагаемых сил.

Анализ : По закону Паскаля давление создаваемое поршнями одинаково.Следовательно: во сколько раз больше поршень во столька раз и больше создаваемая им сила.

ОПЫТ 4.Сухим из воды.

Цель : показать расширение нагретого воздуха и сжатие холодного..

Оборудование : стакан, тарелка с водой, свеча, пробка.

Готовое изделие.

Ход проведения опыта:

1. наливаем воду в тарелку и помещаем на дно монету и на воду поплавок.

2. предлагаем зрителям достать монетку не замочив руку.

3.зажигаем свечку и ставим ее в воду.

4. накрываем прогретым стаканом.

Результат: наблюдаем перемещение воды в стакан..

Анализ: при нагревании воздуха он расширяется. Когда свеча гаснет. Воздух охлаждается, его давление понизится. Атмосферное давление втолкнет воду под стакан.

ОПЫТ 5.Инерция.

Цель : показать проявление инерции.

Оборудование : Бутылка с широким горлышком,картонное кольцо, монеты.

Готовое изделие.

Ход проведения опыта:

1. На горлышко бутылки ставим бумажное кольцо.

2. на кольцо помещаем монетки.

3.резким ударом линейки выбиваем кольцо

Результат: наблюдаем падение монеток в бутылку.

Анализ: инертность это способность тела сохранять свою скорость. При ударе по кольцу монетки не успевают изменить скорость и падают в бутылку.

ОПЫТ 6.Вверх дном.

Цель : Показать поведение жидкости во вращающейся бутылке.

Оборудование : Бутылка с широким горлышком и веревка.

Готовое изделие.

Ход проведения опыта:

1. На горлышко бутылки привязываем веревку.

2. наливаем воду.

3.вращаем бутылку над головой.

Результат: вода не выливается.

Анализ: в верхней точке на воду действует сила тяжести и центробежная сила. Если центробежная сила больше силы тяжести, то вода не выльется.

ОПЫТ 7.Неньютонова жидкость.

Цель : Показать поведение неньютоновой жидкости.

Оборудование : миска.крахмал. вода.

Готовое изделие.

Ход проведения опыта:

1. в миске разводим крахмал и воду в равных пропорциях.

2. демонстрируем необычные свойства жидкости

Результат: субстанция имеет свойства твердого тела и жидкости.

Анализ: при резком воздействии проявляются свойства твердого тела а при медленном-жидкости.

Вывод

В результате работы мы:

    провёли опыты, доказывающие существование атмосферного давления;

    создали самодельные приборы, демонстрирующие зависимость давления жидкости от высоты столба жидкости, закона Паскаля.

Нам понравилось изучать давление, делать самодельные приборы, проводить опыты. Но в мире много интересного, что можно ещё узнать, поэтому в дальнейшем:

Мы будем продолжать изучение этой интересной науки

Мы надеемся, что наши одноклассники заинтересуются этой проблемой, а постараемся помочь им.

В дальнейшем мы будем проводить новые эксперименты.

Заключение

Наблюдать за опытом проводимым учителем, интересно. Проводить его самому интереснее вдвойне.

А проводить опыт с прибором, сделанным и сконструированным своими руками, вызывает очень большой интерес у всего класса. В таких опытах легко установить взаимосвязь и сделать вывод как работает данная установка.

Проводить данные опыты не сложно и интересно. Они безопасны, просты и полезны. Новые исследования впереди!

Литература

    Вечера по физике в средней школе/ Сост. Э.М. Браверман. М.: Просвещение, 1969.

    Внеурочная работа по физике/ Под ред. О.Ф. Кабардина. М.: Просвещение, 1983.

    Гальперштейн Л. Занимательная физика. М.: РОСМЭН, 2000.

    Г орев Л.А. Занимательные опыты по физике. М.: Просвещение, 1985.

    Горячкин Е.Н. Методика и техника физического эксперимента. М.: Просвещение. 1984 г.

    Майоров А.Н. Физика для любознательных, или о чем не узнаешь на уроке. Ярославль: Академия развития, Академия и К, 1999.

    Макеева Г.П., Цедрик М.С. Физические парадоксы и занимательные вопросы. Минск: Народная асвета, 1981.

    Никитин Ю.З. Потехе час. М.: Молодая гвардия, 1980.

    Опыты в домашней лаборатории // Квант. 1980. №4.

    Перельман Я.И. Занимательная механика. Знаете ли вы физику? М.: ВАП, 1994.

    Перышкин А.В., Родина Н.А. Учебник физики для 7 класса. М.: Просвещение. 2012 г

    Перышкин А.В. Физика. – М.: Дрофа, 2 012

Ребята, мы вкладываем душу в сайт. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

Есть очень простые опыты, которые дети запоминают на всю жизнь. Ребята могут не понять до конца, почему это все происходит, но, когда пройдет время и они окажутся на уроке по физике или химии, в памяти обязательно всплывет вполне наглядный пример.

сайт собрал 7 интересных экспериментов, которые запомнятся детям. Все, что нужно для этих опытов, - у вас под рукой.

Огнеупорный шарик

Понадобится : 2 шарика, свечка, спички, вода.

Опыт : Надуйте шарик и подержите его над зажженной свечкой, чтобы продемонстрировать детям, что от огня шарик лопнет. Затем во второй шарик налейте простой воды из-под крана, завяжите и снова поднесите к свечке. Окажется, что с водой шарик спокойно выдерживает пламя свечи.

Объяснение : Вода, находящаяся в шарике, поглощает тепло, выделяемое свечой. Поэтому сам шарик гореть не будет и, следовательно, не лопнет.

Карандаши

Понадобится: полиэтиленовый пакет, простые карандаши, вода.

Опыт: Наливаем воду в полиэтиленовый пакет наполовину. Карандашом протыкаем пакет насквозь в том месте, где он заполнен водой.

Объяснение: Если полиэтиленовый пакет проткнуть и потом залить в него воду, она будет выливаться через отверстия. Но если пакет сначала наполнить водой наполовину и затем проткнуть его острым предметом так, что бы предмет остался воткнутым в пакет, то вода вытекать через эти отверстия почти не будет. Это связано с тем, что при разрыве полиэтилена его молекулы притягиваются ближе друг к другу. В нашем случае, полиэтилен затягивается вокруг карандашей.

Нелопающийся шарик

Понадобится: воздушный шар, деревянная шпажка и немного жидкости для мытья посуды.

Опыт: Смажьте верхушку и нижнюю часть средством и проткните шар, начиная снизу.

Объяснение: Секрет этого трюка прост. Для того, чтобы сохранить шарик, нужно проткнуть его в точках наименьшего натяжения, а они расположены в нижней и в верхней части шарика.

Цветная капуста

Понадобится : 4 стакана с водой, пищевые красители, листья капусты или белые цветы.

Опыт : Добавьте в каждый стакан пищевой краситель любого цвета и поставьте в воду по одному листу или цветку. Оставьте их на ночь. Утром вы увидите, что они окрасились в разные цвета.

Объяснение : Растения всасывают воду и за счет этого питают свои цветы и листья. Получается это благодаря капиллярному эффекту, при котором вода сама стремится заполнить тоненькие трубочки внутри растений. Так питаются и цветы, и трава, и большие деревья. Всасывая подкрашенную воду, они меняют свой цвет.

Плавающее яйцо

Понадобится : 2 яйца, 2 стакана с водой, соль.

Опыт : Аккуратно поместите яйцо в стакан с простой чистой водой. Как и ожидалось, оно опустится на дно (если нет, возможно, яйцо протухло и не стоит возвращать его в холодильник). Во второй стакан налейте теплой воды и размешайте в ней 4-5 столовых ложек соли. Для чистоты эксперимента можно подождать, пока вода остынет. Потом опустите в воду второе яйцо. Оно будет плавать у поверхности.

Объяснение : Тут все дело в плотности. Средняя плотность яйца гораздо больше, чем у простой воды, поэтому яйцо опускается вниз. А плотность соляного раствора выше, и поэтому яйцо поднимается вверх.

Кристаллические леденцы

Понадобится : 2 стакана воды, 5 стаканов сахара, деревянные палочки для мини-шашлычков, плотная бумага, прозрачные стаканы, кастрюля, пищевые красители.

Опыт : В четверти стакана воды сварите сахарный сироп с парой столовых ложек сахара. Высыпьте немного сахара на бумагу. Затем нужно обмакнуть палочку в сироп и собрать ею сахаринки. Далее распределите их равномерно на палочке.

Оставьте палочки на ночь сушиться. Утром в 2 стаканах воды на огне растворите 5 стаканов сахара. Минут на 15 можно оставить сироп остывать, но сильно остыть он не должен, иначе кристаллы не будут расти. Потом разлейте его по банкам и добавьте разные пищевые красители. Заготовленные палочки опустите в банку с сиропом так, чтобы они не касались стенок и дна банки, в этом поможет бельевая прищепка.

Объяснение : С остыванием воды растворимость сахара понижается, и он начинает выпадать в осадок и оседать на стенках сосуда и на вашей палочке с затравкой из сахарных крупинок.

Зажженная спичка

Понадобятся : Спички, фонарик.

Опыт : Зажгите спичку и держите на расстоянии 10-15 сантиметров от стены. Посветите на спичку фонариком, и увидите, что на стене отражается только ваша рука и сама спичка. Казалось бы, очевидно, но я никогда об этом не задумывался.

Объяснение : Огонь не отбрасывает тени, так как не препятствует прохождению света сквозь себя.

И вместе с ними познавать мир и чудеса физических явлений? Тогда приглашаем в нашу "экспериментальную лабораторию", в которой мы расскажем, как создавать простые, но очень интересные эксперименты для детей.


Эксперименты с яйцом

Яйцо с солью

Яйцо опустится на дно, если Вы поместите его в стакан с обычной водой, но что произойдет, если в воду добавить соль? Результат очень интересен и может наглядно показать интересные факты о плотности.

Вам понадобятся:

  • Поваренная соль
  • Высокий стакан.

Инструкция:

1. Половину стакана наполняем водой.

2. Добавляем в стакан много соли (около 6 столовых ложек).

3. Мешаем.

4. Осторожно опускаем яйцо в воду и наблюдаем за происходящим.

Объяснение

Соленая вода имеет большую плотность, чем обычная водопроводная. Именно соль поднимает яйцо на поверхность. А если добавлять в уже имеющуюся соленую воду пресную, то яйцо будет постепенно опускаться на дно.

Яйцо в бутылке


Знаете ли Вы, что вареное цельное яйцо можно легко поместить в бутылку?

Вам понадобятся:

  • Бутылка с диаметром горлышка меньшим диаметра яйца
  • Вареное яйцо вкрутую
  • Спички
  • Немного бумаги
  • Растительное масло.

Инструкция:

1. Смажьте горлышко бутылки растительным маслом.

2. Теперь поджигайте бумагу (можно просто несколько спичек) и сразу кидайте в бутылку.

3. Положите на горлышко яйцо.

Когда огонь погаснет, яйцо окажется внутри бутылки.

Объяснение

Огонь провоцирует нагревание воздуха в бутылке, который выходит наружу. После того, как погаснет огонь, воздух в бутылке начнет охлаждаться и сжиматься. Поэтому в бутылке образуется низкое давление, а наружное давление заталкивает яйцо в бутылку.

Эксперимент с шариком


Этот опыт показывает, как взаимодействуют между собой резина и апельсиновая цедра.

Вам понадобятся:

  • Воздушный шарик
  • Апельсин.

Инструкция:

1. Надуйте воздушный шарик.

2. Почистите апельсин, но апельсиновую шкурку (цедру) не выбрасывайте.

3. Выжмите апельсиновую цедру над шариком, после чего он лопнет.

Объяснение.

Цедра апельсина содержит вещество лимонен. Он способен растворять резину, что и происходит с шариком.

Эксперимент со свечой


Интересный эксперимент, показывающий возгорание свечи на расстоянии.

Вам понадобятся:

  • Обычная свеча
  • Спички или зажигалка.

Инструкция:

1. Зажгите свечу.

2. Через несколько секунд потушите ее.

3. Теперь поднесите горящее пламя к дыму, исходящему от свечи. Свеча снова начнет гореть.

Объяснение

Дым, поднимающийся вверх от погасшей свечи, содержит парафин, который быстро загорается. Горящие пары парафина доходят до фитиля, и свеча снова начинает гореть.

Сода с уксусом


Шарик, который сам надувается, это очень интересное зрелище.

Вам понадобятся:

  • Бутылка
  • Стакан уксуса
  • 4 чайных ложки соды
  • Воздушный шарик.

Инструкция:

1. Наливаем стакан уксуса в бутылку.

2. Засыпаем соду в шарик.

3. Надеваем шарик на горлышко бутылки.

4. Медленно ставим шарик вертикально, высыпая при этом соду в бутылку с уксусом.

5. Наблюдаем за тем, как надувается шарик.

Объяснение

Если добавлять соду в уксус, то происходит процесс, называемый гашение соды. Во время данного процесса выделяется углекислый газ, который и надувает наш шарик.

Невидимые чернила


Поиграйте со своим ребенком в секретного агента и создайте свои невидимые чернила.

Вам понадобятся:

  • Половина лимона
  • Ложка
  • Миска
  • Ватный тампон
  • Белая бумага
  • Лампа.

Инструкция:

1. Выжмите немного лимонного сока в миску и добавьте столько же воды.

2. Опустите ватный тампон в смесь и напишите что-нибудь на белой бумаге.

3. Подождите, пока сок высохнет, и полностью станет невидимым.

4. Когда вы будете готовы, чтобы прочитать секретное сообщение или показать его кому-то еще, нагрейте бумагу, держа ее близко к лампочке или к огню.

Объяснение

Лимонный сок является органическим веществом, которое окисляется и становится коричневым при нагревании. Разбавленный лимонный сок в воде делает его трудно заметным на бумаге, и никто не будет знать, что там есть лимонный сок, пока он не нагреется.

Другие вещества, которые работают по такому же принципу:

  • Апельсиновый сок
  • Молоко
  • Луковый сок
  • Уксус
  • Вино.

Как сделать лаву


Вам понадобятся:

  • Подсолнечное масло
  • Сок или пищевой краситель
  • Прозрачный сосуд (можно стакан)
  • Какие-либо шипучие таблетки.

Инструкция:

1. Сперва наливаем сок в стакан так, чтобы он заполнил примерно 70% объема тары.

2. Оставшуюся часть стакана заполняем подсолнечным маслом.

3. Теперь ждем, пока сок отделится от подсолнечного масла.

4. Бросаем в стакан таблетку и наблюдаем эффект, похожий на лаву. Когда таблетка растворится, то можно бросить еще одну.

Объяснение

Масло отделяется от воды, так как оно имеет меньшую плотность. Растворяясь в соке, таблетка выделяет углекислый газ, который захватывает части сока и поднимает его наверх. Газ выходит полностью из стакана, когда достигает вершины, при этом частицы сока падают обратно вниз.

Таблетка шипит за счет того, что содержит лимонную кислоту и соду (бикарбонат натрия). Оба эти ингредиента вступают в реакцию с водой с образованием цитрата натрия и газообразного диоксида углерода.

Эксперимент со льдом


На первый взгляд можно подумать, что кубик льда, находясь сверху, в конечном итоге плавится, за счет чего и должен заставить воду разлиться, но так ли это на самом деле?

Вам понадобятся:

  • Стакан
  • Кубики льда.

Инструкция:

1. Заполните стакан теплой водой до самого края.

2. Осторожно опустите кубики льда.

3. Наблюдайте внимательно за уровнем воды.

По мере таяния льда уровень воды совершенно не меняется.

Объяснение

Когда вода замерзает, превращаясь в лед, она расширяется, увеличивая свой объем (вот почему зимой могут разрываться даже отопительные трубы). Вода из растаявшего льда занимает меньше места, чем сам лед. Поэтому когда кубик льда тает, уровень воды остается примерно такой же.

Как сделать парашют


Узнайте о сопротивлении воздуха, сделав небольшой парашют.

Вам понадобятся:

  • Полиэтиленовый пакет или другой легкий материал
  • Ножницы
  • Маленький груз (возможно, какая-либо фигурка).

Инструкция:

1. Вырезаем большой квадрат из полиэтиленового пакета.

2. Теперь обрезаем края так, чтобы получился восьмиугольник (восемь одинаковых сторон).

3. Теперь привязываем 8 отрезков нитей к каждому углу.

4. Не забудьте сделать небольшое отверстие в середине парашюта.

5. Другие концы нитей привяжите на маленький груз.

6. Используем стул или находим высокую точку, чтобы запустить парашют и проверить, как он летает. Помните, что парашют должен лететь как можно медленнее.

Объяснение

Когда выпускается парашют, груз тянет его вниз, но при помощи строп парашют занимает большую площадь, которая сопротивляется воздуху, за счет чего груз медленно опускается. Чем больше площадь поверхности парашюта, тем больше сопротивляется эта поверхность падению, и тем медленнее будет опускаться парашют.

Небольшое отверстие в середине парашюта позволяет воздуху медленно проходить через него, а не заваливать парашют на одну сторону.

Как сделать торнадо


Узнайте, как сделать торнадо в бутылке с этим веселым научным экспериментом для детей. Использованные в эксперименте предметы легко найти в обиходе. Сделанный домашний мини-торнадо намного безопаснее торнадо, который показывают по телевидению в степях Америки.