Определение симметричных точек относительно данной точки. Н.Никитин Геометрия

Цель урока:

  • формирование понятия "симметричные точки";
  • учить детей строить точки, симметричные данным;
  • учить строить отрезки, симметричные данным;
  • закрепление пройденного (формирование вычислительных навыков, деление многозначного числа на однозначное).

На стенде "к уроку" карточки:

1. Организационный момент

Приветствие.

Учитель обращает внимание на стенд:

Дети, начинаем урок с планирования нашей работы.

Сегодня на уроке математики мы совершим путешествие в 3 царства: царство арифметики, алгебры и геометрии. Начнем урок с самого главного для нас сегодня, с геометрии. Я расскажу вам сказку, но "Сказка - ложь, да в ней намек - добрым молодцам урок".

":У одного философа по имени Буридан был осёл. Однажды, уезжая надолго, философ положил перед ослом две одинаковые охапки сена. Он поставил скамейку, а слева от скамейки и справа от нее на одинаковом расстоянии положил совершенно одинаковые охапки сена.

Рисунок 1 на доске:

Осел ходил от одной охапки сена к другой, но так и не решил, с какой охапки ему начать. И, в конце концов, умер с голоду".

Почему осел так и не решил, с какой охапки сена ему начать?

Что вы можете сказать про эти охапки сена?

(Охапки сена совершенно одинаковы, находились на одинаковом расстоянии от скамейки, значит, они симметричны).

2. Проведем небольшую исследовательскую работу.

Возьмите лист бумаги (у каждого ребенка на парте лежит лист цветной бумаги), сложите его пополам. Проколите его ножкой циркуля. Разверните.

Что у вас получилось? (2 симметричных точки).

Как убедиться в том, что они действительно симметричны? (сложим лист, точки совпадают)

3. На доске:

Как вы думаете, симметричны ли данные точки? (нет). Почему? Как нам убедиться в этом?

Рисунок 3:

Симметричны ли эти точки А и В?

Как мы можем это доказать?

(Измерить расстояние от прямой до точек)

Возвращаемся к нашим листочкам цветной бумаги.

Измерьте расстояние от линии сгиба (оси симметрии) сначала до одной, а потом до другой точки (но сначала соедините их отрезком).

Что вы можете сказать про эти расстояния?

(Одинаковые)

Найдите середину вашего отрезка.

Где она находится?

(Является точкой пересечения отрезка АВ с осью симметрии)

4. Обращаем внимание на углы, образованные в результате пересечения отрезка АВ с осью симметрии. (Выясняем с помощью угольника, каждый ребенок работает на своем рабочем месте, один уч-ся на доске).

Вывод детей: отрезок АВ находится под прямым углом по отношению к оси симметрии.

Сами того не ведая, мы сейчас с вами открыли математическое правило:

Если точки А и В симметричны относительно прямой или оси симметрии, то отрезок, соединяющий эти точки, находится под прямым углом, или перпендикулярен этой прямой. (Слово "перпендикулярен" выписано отдельно на стенде). Слово "перпендикулярен" произносим вслух хором.

5. Обратим внимание, как это правило написано у нас в учебнике.

Работа по учебнику.

Найдите симметричные точки, относительно прямой. Будут ли точки А и В симметричны относительно этой прямой?

6. Работа над новым материалом.

Поучимся строить точки, симметричные данным, относительно прямой.

Учитель учит рассуждать.

Чтобы построить точку, симметричную точке А, нужно перенести эту точку от прямой на то же расстояние вправо.

7. Будем учиться строить отрезки, симметричные данным, относительно прямой . Работа по учебнику.

Учащиеся рассуждают у доски.

8. Устный счет.

На этом мы закончим наше пребывание в Царстве "Геометрия" и проведем небольшую математическую разминку, побывав в царстве "Арифметика".

В то время, когда все работают устно, два учащиеся работают на индивидуальных досках.

А) Выполните деление с проверкой:

Б) Вставив нужные цифры, решите пример и проверьте:

Устный счет.

  1. Продолжительность жизни березы 250 лет, а дуба в 4 раза больше. Сколько лет живет дуб?
  2. Попугай живет в среднем 150 лет, а слон в 3 раза меньше. Сколько лет живет слон?
  3. Медведь позвал к себе гостей: ежа, лиса и белку. И в дар ему преподнесли горчичницу, вилку и ложку. Что подарил медведю еж?

Ответить на этот вопрос мы сможем, если выполним данные программы.

  • Горчичница - 7
  • Вилка - 8
  • Ложка - 6

(Еж подарил ложку)

4) Вычислите. Найдите лишний пример.

  • 810: 90
  • 360: 60
  • 420: 7
  • 560: 80

5) Найдите закономерность и помогите записать нужное число:

3 9 81
2 16
5 10 20
6 24

9. А сейчас немного отдохнем.

Послушаем "Лунную сонату" Бетховена. Минутка классической музыки. Уч-ся кладут голову на парту, закрывают глаза, слушают музыку.

10. Путешествие в царство алгебры.

Угадай корни уравнения и сделай проверку:

Уч-ся решают на доске и в тетрадях. Объясняют, как догадались.

11. "Блицтурнир" .

а) Ася купила 5 бубликов по а рублей и 2 батона по b рублей. Сколько стоит вся покупка?

Проверяем. Делимся мнениями.

12. Подведение итогов.

Итак, мы закончили наше путешествие в царство математики.

Что было для вас самым важным на уроке?

Кому наш урок понравился?

Мне было приятно с вами работать

Спасибо вам за урок.

Определение. Симметрия (означает «соразмерность») - свойство геометрических объектов совмещаться с собой при определенных преобразованиях. Под симметрией понимают всякую правильность во внутреннем строении тела или фигуры.

Симметрия относительно точки - это центральная симметрия (рис. 23 ниже), а симметрия относительно прямой - это осевая симметрия (рис. 24 ниже).

Симметрия относительно точки предполагает, что по обе стороны от точки на одинаковых расстояниях находится что-либо, например другие точки или геометрическое место точек (прямые линии, кривые линии, геометрические фигуры).

Если соединить прямой симметричные точки (точки геометрической фигуры) через точку симметрии, то симметричные точки будут лежать на концах прямой, а точка симметрии будет ее серединой. Если закрепить точку симметрии и вращать прямую, то симметричные точки опишут кривые, каждая точка которых тоже будет симметрична точке другой кривой линии.

Симметрия относительно прямой (оси симметрии) предполагает, что по перпендикуляру, проведенному через каждую точку оси симметрии, на одинаковом расстоянии от нее расположены две симметричные точки. Относительно оси симметрии (прямой) могут располагаться те же геометрические фигуры, что и относительно точки симметрии.

Примером может служить лист тетради, который согнут пополам, если по линии сгиба провести прямую линию (ось симметрии). Каждая точка одной половины листа будет иметь симметричную точку на второй половине листа, если они расположены на одинаковом расстоянии от линии сгиба на перпендикуляре к оси.

Линия осевой симметрии, как на рисунке 24, вертикальна, и горизонтальные края листа перпендикулярны ей. Т. е. ось симметрии служит перпендикуляром к серединам горизонтальных ограничивающих лист прямых. Симметричные точки (R и F, C и D) расположены на одинаковом расстоянии от осевой прямой - перпендикуляра к прямым, соединяющим эти точки. Следовательно, все точки перпендикуляра (оси симметрии), проведенного через середину отрезка, равноудалены от его концов; или любая точка перпендикуляра (оси симметрии) к середине отрезка равноудалена от концов этого отрезка.

6.7.3. Осевая симметрия

Точки А и А 1 симметричны относительно прямой m, так как прямая m перпендикулярна отрезку АА 1 и проходит через его середину.

m – ось симметрии.

Прямоугольник ABCD имеет две оси симметрии: прямые m и l .

Если чертеж перегнуть по прямой m или по прямой l, то обе части чертежа совпадут.

Квадрат ABCD имеет четыре оси симметрии: прямые m , l , k и s .

Если квадрат перегнуть по какой-либо из прямых: m , l , k или s , то обе части квадрата совпадут.

Окружность с центром в точке О и радиусом ОА имеет бесчисленное количество осей симметрии. Это прямые: m, m 1, m 2 , m 3 .

Задание. Построить точку А 1 , симметричную точке А(-4; 2) относительно оси Ох.

Построить точку А 2 , симметричную точке А(-4; 2) относительно оси Оy.

Точка А 1 (-4; -2) симметрична точке А(-4; 2) относительно оси Ох, так как ось Ох перпендикулярна отрезку АА 1 и проходит через его середину.

У точек, симметричных относительно оси Ох абсциссы совпадают, а ординаты являются противоположными числами.

Точка А 2 (4; -2) симметрична точке А(-4; 2) относительно оси Оy, так как ось Оу перпендикулярна отрезку АА 2 и проходит через его середину.

У точек, симметричных относительно оси Оу ординаты совпадают, а абсциссы являются противоположными числами.

www.mathematics-repetition.com

wiki.eduVdom.com

Инструменты пользователя

Инструменты сайта

Боковая панель

Геометрия:

Контакты

Центральная и осевая симметрии

Центральная симметрия

Две точки А и А 1 называются симметричными относительно точки О, если О - середина отрезка АА 1 (рис.1). Точка О считается симметричной самой себе.

Пример центральной симметрии

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.

Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм (рис.2).

Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма - точка пересечения его диагоналей. Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии (точка О на рис.2), у прямой их бесконечно много - любая точка прямой является ее центром симметрии.

Осевая симметрия

Две точки А и А 1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к нему (рис.3). Каждая точка прямой а считается симметричной самой себе.

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры.

Примеры таких фигур и их оси симметрии изображены на рисунке 4.

Заметим, что у окружности любая прямая, проходящая через ее центр, является осью симметрии.

Сравнение симметрий

Центральная и осевая симметрии

Сколько всего осей симметрии имеет фигура, изображённая на рисунке?

wiki.eduvdom.com

Урок «Осевая и центральная симметрия»

Краткое описание документа:

Симметрия – достаточно интересная тема в геометрии, так как именно это понятие очень часто встречается не только в процессе жизнедеятельности человека но и в природе.

Первая часть видео-презентации «Осевая и центральная симметрия» дает определение симметричности двух точек относительно прямой на плоскости. Условием их симметричности является возможность проведения через них отрезка, через середину которого будет проходить заданная прямая. Обязательным условием такой симметричности является перпендикулярность отрезка и прямой.

Следующая часть видео-урока дает наглядный пример определения, который показывается в виде чертежа, где несколько пар точек симметричны относительно прямой, а любая точка на этой прямой симметрична сама себе.

После получения первоначальных понятий о симметрии, ученикам предлагается более сложное определение фигуры, симметричной относительно прямой. Определение предлагается в виде текстового правила, а также параллельно сопровождается речью диктора за кадром. Завершает эту часть примеры симметричных и не симметричных фигур, относительно прямой. Интересно, что существуют геометрические фигуры, имеющие несколько осей симметрии – все они наглядно представлены в виде чертежей, где оси выделены отдельным цветом. Облегчить понимание предлагаемого материала можно таким способом – предмет или фигура является симметричной, если она точно совпадает при складывании двух половин относительно своей оси.

Кроме осевой симметрии существует симметрия относительно одной точки. Именно этому понятию посвящена следующая часть видео-презентации. Сначала дается определение симметричности двух точек относительно третьей, затем предоставляется пример в виде рисунке, где показаны симметричная и не симметричная пара точек. Завершает эту часть урока примеры геометрических фигур, у которых присутствует или отсутствует цент симметрии.

В заключении урока ученикам предлагается ознакомиться с наиболее яркими примерами симметрии, которые можно встретить в окружающем мире. Понимание и умение строить симметричные фигуры просто необходимы в жизни людей, которые занимаются самыми разными профессиями. По своей сути симметрия – основа всей человеческой цивилизации, так как 9 из 10 предметов, окружающих человека, имеют тот или иной тип симметрии. Без симметрии было бы не возможно возведение многих больших архитектурных сооружений, не получилось бы достигнуть впечатляющих мощностей в промышленности и так далее. В природе симметрия также – очень распространенное явление, и если в неодушевленных предметах ее встретить практически невозможно, то живой мир буквально кишит ею – практически вся флора и фауна, за редким исключением, имеет или осевую, или центральную симметрию.

Обычная школьная программа разрабатывается с таким учетом, чтобы ее мог бы понять любой ученик, допущенный к занятием. Видео-презентация в несколько раз облегчает этот процесс, так как одновременно воздействует на несколько центров освоения информации, предоставляет материал в нескольких цветах, тем самым, заставляя учеников концентрировать внимание учеников на самом важном во время урока. В отличии от обычного способа обучения в школах, когда не каждый учитель имеет возможность или желание отвечать ученикам на уточняющие вопросы, видео-урок легко можно перемотать на необходимое место, чтобы заново прослушать диктора и прочитать нужную информацию еще раз, вплоть до ее полного понимания. Учитывая простоту подачи материала, видео-презентацию можно использовать не только во время школьных занятий, но и в домашних условиях, в качестве самостоятельного способа обучения.

urokimatematiki.ru

Презентация «Движения. Осевая симметрия»

Документы в архиве:

Название документа 8.

Описание презентации по отдельным слайдам:

Центральная симметрия - один из примеров движения

Определение Осевая симметрия с осью а - отображение пространства на себя, при котором любая точка К переходит в симметричную ей точку К1 относительно оси а

1) Оxyz - прямоугольная система координат Оz - ось симметрии 2) М(x; y; z) и M1(x1; y1; z1), симметричны относительно оси Оz Формулы будут верны и в случае, если точка М ⊂ Оz Осевая симметрия является движением Z X Y М(x; y; z) M1(x1; y1; z1) O

Доказать: Задача 1 при осевой симметрии прямая, образующая с осью симметрии угол φ, отображается на прямую, так же образующую с осью симметрии угол φ Решение: при осевой симметрии прямая, образующая с осью симметрии угол φ, отображается на прямую, так же образующую с осью симметрии угол φ A F E N m l a φ φ

Дано: 2) △ABD - прямоугольный, по теореме Пифагора: 1) DD1 ⏊ (A1C1D1), 3) △BDD2 - прямоугольный, по теореме Пифагора: Задача 2 Найти: BD2 Решение:

Краткое описание документа:

Презентация «Движения. Осевая симметрия» представляет наглядный материал для объяснения на школьном уроке математики основных положений данной темы. В данной презентации осевая симметрия рассматривается как еще один вид движения. В ходе презентации ученикам напоминается изученное понятие центральной симметрии, дается определение осевой симметрии, доказывается положение о том, что осевая симметрия является движением, а также описывается решение двух задач, в которых необходимо оперировать понятием осевой симметрии.

Осевая симметрия является движением, поэтому ее представление на классной доске вызывает сложности. Более четкие понятные построения можно сделать с помощью электронных средств. Благодаря этому построения хорошо видны с любой парты в классе. На рисунках есть возможность выделить цветом детали построения, акцентировать внимание на особенностях операции. С той же целью используются анимационные эффекты. С помощью инструментов презентации учителю легче достичь целей обучения, поэтому презентация применяется для повышения эффективности урока.

Демонстрация начинается с напоминания ученикам об изученном виде движения – центральной симметрии. Примером применения операция служит симметричное отображение нарисованной груши. На плоскости отмечается точка, относительно которой каждая точка изображения переходит в симметричную. Отображенное изображение, таким образом, перевернуто. При этом все расстояния между точками объекта сохраняются при центральной симметрии.

На втором слайде вводится понятие осевой симметрии. На рисунке изображен треугольник, каждая его вершина переходит в симметричную вершину треугольника относительно некоторой оси. В рамке выделено определение осевой симметрии. Отмечается, что при нем каждая точка объекта переходит в симметричную.

Далее в прямоугольной координатной системе рассматривается осевая симметрия, свойства координат объекта, отображенного с помощью осевой симметрии, в также доказывается, что при данном отображении сохраняются расстояния, что есть признаком движения. Справа на слайде изображается прямоугольная система координат Оxyz. За ось симметрии принимается ось Оz. В пространстве отмечена точка М, при соответствующем отображении переходящая в М 1 . На рисунке видно, что при осевой симметрии точка сохраняет свою аппликату.

Отмечается, что среднее арифметическое абсцисс и ординат данного отображения при осевой симметрии равно нулю, то есть (x+ x 1)/2=0; (y+ y 1)/2=0. Иначе это свидетельствует, что x=-x 1 ; y=-y 1 ; z=z 1 . Правило сохраняется и в случае, если точка М отмечена на самой оси Оz.

Для рассмотрения, сохраняются ли расстояния между точками при осевой симметрии, описывается операция на точками А и В. Отображаясь относительно оси Оz, описываемые точки переходят в А1 и В1. Чтобы определить расстояние между точками, воспользуемся формулой, в которой расстояние вычисляется по координатам. Отмечается, что АВ=√(x 2 -x 1) 2 +(y 2 -y 1) 2 +(z 2 -z 1) 2), а для отображенных точек А 1 В 1 =√(-x 2 +x 1) 2 +(-y 2 +y 1) 2 +(z 2 -z 1) 2). Учитывая свойства возведения в квадрат, можно отметить, что АВ=А 1 В 1 . Это говорит о том, что расстояния сохраняются между точками – главный признак движения. Значит, осевая симметрия есть движение.

На слайде 5 рассматривается решение задачи 1. В ней необходимо доказать утверждение, что прямая, проходящая под углом φ к оси симметрии, образует с ней такой же угол φ. К задаче дается изображение, на котором начерчена ось симметрии, а также прямая m, образующая с осью симметрии угол φ, и относительно оси ее отображение – прямая l. Доказательство утверждения начинается с построения дополнительных точек. Отмечается, что прямая m пересекает ось симметрии в А. Если отметить на этой прямой точку F≠A и опустить от нее перпендикуляр на ось симметрии, получим пересечение перпендикуляра с осью симметрии в точке Е. При осевой симметрии отрезок FE переходит в отрезок NE. В результате такого построения получили прямоугольные треугольники ΔAEF и ΔAEN. Эти треугольник равны, так как АЕ является у них общим катетом, а FE = NE равны по построению. Соответственно, угол ∠EAN=∠EAF. Из этого следует, что отображенная прямая также образует с осью симметрии угол φ. Задача решена.

На последнем слайде рассматривается решение задачи 2, в которой необходимо дан куб ABCDA 1 B 1 C 1 D 1 со стороной а. Известно, что после симметрии относительно оси, содержащей ребро B 1 D 1 , точка D переходит в D 1 . В задаче требуется найти BD 2 . К задаче делается построение. На рисунке изображен куб, по которому видно, что осью симметрии является диагональ грани куба B 1 D 1 . Отрезок, образующийся при движении точки D, перпендикулярен плоскости грани, которой принадлежит ось симметрии. Так как при движении сохраняются расстояния между точками, то DD 1 = D 1 D 2 =а, то есть расстояние DD 2 =2а. Из прямоугольного треугольника ΔABD по теореме Пифагора следует, что BD=√(AB 2 +AD 2)=а√2. Из прямоугольного треугольника ΔВDD 2 следует по теореме Пифагора BD 2 =√(DD 2 2 +ВD 2)=а√6. Задача решена.

Презентация «Движения. Осевая симметрия» используется для повышения эффективности школьного урока математики. Также этот метод наглядности поможет учителю, осуществляющему дистанционное обучение. Материал может быть предложен для самостоятельного рассмотрения учениками, которые недостаточно хорошо усвоили тему урока.

Почему жена ушла и не подает на развод Практический форум о настоящей любви Жена подаёт на развод.Помогите! Жена подаёт на развод.Помогите! Сообщение MIRON4IK » 23 окт 2009, 16:22 Сообщение raz » 23 окт 2009, 19:17 Сообщение MIRON4IK » 23 окт 2009, 22:21 Сообщение edon » […]

  • Суд над фашизмом – Нюрнбергский процесс 8 августа 1945 г., через три месяца после Победы над фашистской Германией страны-победительницы: СССР, США, Великобритания и Франция в ходе лондонской конференции утвердили Соглашение о создании […]
  • Дурович А.П. Маркетинг в туризме Учебное пособие. - Минск: Новое знание, 2003. - 496 с. Раскрываются сущность, принципы маркетинга, его функции и технология маркетинговой деятельности в туризме. Концептуально структура учебного пособия […]
  • Учебное пособие "Таблица умножения", Lakeshore Планшет "Деление", который сама себя проверяет, настолько упрощает математику, что дети могут учиться сами! Дети просто нажимают кнопки равенства. и тут же появляются ответы-подсказки! 81 […]
  • ТРЕУГОЛЬНИКИ.

    § 17. СИММЕТРИЯ ОТНОСИТЕЛЬНО ПРЯМОЙ.

    1. Фигуры, симметричные друг другу.

    Начертим на листе бумаги чернилами какую-нибудь фигуру, а карандашом вне её - произвольную прямую. Затем, не давая чернилам высохнуть, перегнём лист бумаги по этой прямой так, чтобы одна часть листа налегла на другую. На этой другой части листа получится, таким образом, отпечаток данной фигуры.

    Если затем лист бумаги опять распрямить, то на нём окажутся две фигуры, которые называются симметричными относительно данной прямой (черт. 128).

    Две фигуры называются симметричными относительно некоторой прямой, если при перегибании плоскости чертежа по этой прямой они совмещаются.

    Прямая, относительно которой данные фигуры симметричны, называется их осью симметрии .

    Из определения симметричных фигур следует, что всякие симметричные фигуры равны.

    Получить симметричные фигуры можно и не пользуясь перегибанием плоскости, а с помощью геометрического построения. Пусть требуется построить точку С", симметричную данной точке С относительно прямой АВ. Опустим из точки С перпендикуляр
    СD на прямую АВ и на продолжении его отложим отрезок DС" = DС. Если перегнём плоскость чертежа по АВ, то точка С совместится с точкой С": точки С и С" симметричны (черт. 129).

    Пусть требуется теперь построить отрезок С"D", симметричный данному отрезку СD относительно прямой АВ. Построим точки С" и D", симметричные точкам С и D. Если перегнём плоскость чертежа по АВ, то точки С и D совместятся соответственно с точками С" и D" (черт. 130).Поэтому отрезки СD и С"D" совместятся, они будут симметричны.

    Построим теперь фигуру, симметричную данному многоугольнику АВСDЕ относительно данной оси симметрии МN (черт. 131).

    Для решения этой задачи опустим перпендикуляры Аа , Вb , Сс , Dd и Ее на ось симметрии МN. Затем на продолжениях этих перпендикуляров отложим отрезки
    а
    А" = Аа , b В" = Вb , с С" = Сс; d D"" =Dd и е Е" = Ее .

    Многоугольник А"В"С"D"Е" будет симметричным многоугольнику АВСDЕ. Действительно, если перегнуть чертёж по прямой МN, то соответствующие вершины обоих многоугольников совместятся, а значит, совместятся и сами многоугольники; это и доказывает, что многоугольники АВСDЕ и А"В"С"D"Е" симметричны относительно прямой MN.

    2. Фигуры, состоящие из симметричных частей.

    Часто встречаются геометрические фигуры, которые какой-нибудь прямой разделяются на две симметричные части. Такие фигуры называются симметричными.

    Так, например, угол - фигура симметричная, и биссектриса угла является его осью симметрии, так как при перегибании по ней одна часть угла совмещается с другой (черт. 132).

    В круге осью симметрии является его диаметр, так как при перегибании по нему один полукруг совмещается с другим (черт. 133). Точно так же симметричны фигуры на чертежах 134, а, б.

    Симметричные фигуры часто встречаются в природе, строительстве, в украшениях. Изображения, помещённые на чертежах 135 и 136, симметричны.

    Следует заметить, что симметричные фигуры совместить простым передвижением по плоскости можно лишь в некоторых случаях. Чтобы совместить симметричные фигуры, как правило, необходимо одну из них повернуть обратной стороной,

    Симметрия I Симме́трия (от греч. symmetria - соразмерность)

    в математике,

    1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости α в пространстве (относительно прямой а на плоскости), - преобразование пространства (плоскости), при котором каждая точка М переходит в точку M" такую, что отрезок MM" перпендикулярен плоскости α (прямой а ) и делится ею пополам. Плоскость α (прямая а ) называется плоскостью (осью) С.

    Отражение - пример ортогонального преобразования (См. Ортогональное преобразование), изменяющего ориентацию (См. Ориентация) (в отличие от собственного движения). Любое ортогональное преобразование можно осуществить последовательным выполнением конечного числа отражений - этот факт играет существенную роль в исследовании С. геометрических фигур.

    2) Симметрия (в широком смысле) - свойство геометрической фигуры Ф , характеризующее некоторую правильность формы Ф , неизменность её при действии движений и отражений. Точнее, фигура Ф обладает С. (симметрична), если существует нетождественное ортогональное преобразование, переводящее эту фигуру в себя. Совокупность всех ортогональных преобразований, совмещающих фигуру Ф с самой собой, является группой (См. Группа), называемой группой симметрии этой фигуры (иногда сами эти преобразования называются симметриями).

    Так, плоская фигура, преобразующаяся в себя при отражении, симметрична относительно прямой - оси С. (рис. 1 ); здесь группа симметрии состоит из двух элементов. Если фигура Ф на плоскости такова, что повороты относительно какой-либо точки О на угол 360°/n , n - целое число ≥ 2, переводят её в себя, то Ф обладает С. n -го порядка относительно точки О - центра С. Примером таких фигур являются правильные многоугольники (рис. 2 ); группа С. здесь - т. н. циклическая группа n -го порядка. Окружность обладает С. бесконечного порядка (поскольку совмещается с собой поворотом на любой угол).

    Простейшими видами пространственной С., помимо С., порожденной отражениями, являются центральная С., осевая С. и С. переноса.

    а) В случае центральной симметрии (инверсии) относительно точки О фигура Ф совмещается сама с собой после последовательных отражений от трёх взаимно перпендикулярных плоскостей, другими словами, точка О - середина отрезка, соединяющего симметричные точки Ф (рис. 3 ). б) В случае осевой симметрии, или С. относительно прямой n -го порядка, фигура накладывается на себя вращением вокруг некоторой прямой (оси С.) на угол 360°/n . Например, куб имеет прямую AB осью С. третьего порядка, а прямую CD - осью С. четвёртого порядка (рис. 3 ); вообще, правильные и полуправильные многогранники симметричны относительно ряда прямых. Расположение, количество и порядок осей С. играют важную роль в кристаллографии (см. Симметрия кристаллов), в) Фигура, накладывающаяся на себя последовательным вращением на угол 360°/2k вокруг прямой AB и отражением в плоскости, перпендикулярной к ней, имеет зеркально-осевую С. Прямая AB , называется зеркально-поворотной осью С. порядка 2k , является осью С. порядка k (рис. 4 ). Зеркально-осевая С. порядка 2 равносильна центральной С. г) В случае симметрии переноса фигура накладывается на себя переносом вдоль некоторой прямой (оси переноса) на какой-либо отрезок. Например, фигура с единственной осью переноса обладает бесконечным множеством плоскостей С. (поскольку любой перенос можно осуществить двумя последовательными отражениями от плоскостей, перпендикулярных оси переноса) (рис. 5 ). Фигуры, имеющие несколько осей переноса, играют важную роль при исследовании кристаллических решёток (См. Кристаллическая решётка).

    В искусстве С. получила распространение как один из видов гармоничной композиции (См. Композиция). Она свойственна произведениям архитектуры (являясь непременным качеством если не всего сооружения в целом, то его частей и деталей - плана, фасада, колонн, капителей и т. д.) и декоративно-прикладного искусства. С. используется также в качестве основного приёма построения бордюров и Орнамент ов (плоских фигур, обладающих соответственно одной или несколькими С. переноса в сочетании с отражениями) (рис. 6 , 7 ).

    Комбинации С., порожденные отражениями и вращениями (исчерпывающие все виды С. геометрических фигур), а также переносами, представляют интерес и являются предметом исследования в различных областях естествознания. Например, винтовая С., осуществляемая поворотом на некоторый угол вокруг оси, дополненным переносом вдоль той же оси, наблюдается в расположении листьев у растений (рис. 8 ) (подробнее см. в ст. Симметрия в биологии). С. конфигурации молекул, сказывающаяся на их физических и химических характеристиках, имеет значение при теоретическом анализе строения соединений, их свойств и поведения в различных реакциях (см. Симметрия в химии). Наконец, в физических науках вообще, помимо уже указанной геометрической С. кристаллов и решёток, приобретают важное значение представления о С. в общем смысле (см. ниже). Так, симметричность физического пространства-времени, выражающаяся в его однородности и изотропности (см. Относительности теория), позволяет установить т. н. Сохранения законы ; обобщённая С. играет существенную роль в образовании атомных спектров и в классификации элементарных частиц (см. Симметрия в физике).

    3) Симметрия (в общем смысле) означает инвариантность структуры математического (или физического) объекта относительно его преобразований. Например, С. законов теории относительности определяется инвариантностью их относительно Лоренца преобразований (См. Лоренца преобразования). Определение совокупности преобразований, оставляющих без изменения все структурные соотношения объекта, т. е. определение группы G его автоморфизмов, стало руководящим принципом современной математики и физики, позволяющим глубоко проникнуть во внутреннее строение объекта в целом и его частей.

    Поскольку такой объект можно представить элементами некоторого пространства Р , наделённого соответствующей характерной для него структурой, постольку преобразования объекта являются преобразованиями Р . Т. о. получается представление группы G в группе преобразований Р (или просто в Р ), а исследование С. объекта сводится к исследованию действия G на Р и отысканию инвариантов этого действия. Точно так же С. физических законов, управляющих исследуемым объектом и обычно описывающихся уравнениями, которым удовлетворяют элементы пространства Р , определяется действием G на такие уравнения.

    Так, например, если некоторое уравнение линейно на линейном же пространстве Р и остаётся инвариантным при преобразованиях некоторой группы G , то каждому элементу g из G соответствует линейное преобразование T g в линейном пространстве R решений этого уравнения. Соответствие g T g является линейным представлением G и знание всех таких её представлений позволяет устанавливать различные свойства решений, а также помогает находить во многих случаях (из «соображений симметрии») и сами решения. Этим, в частности, объясняется необходимость для математики и физики развитой теории линейных представлений групп. Конкретные примеры см. в ст. Симметрия в физике.

    Лит.: Шубников А. В., Симметрия. (Законы симметрии и их применение в науке, технике и прикладном искусстве), М. - Л., 1940; Кокстер Г. С. М., Введение в геометрию, пер. с англ., М., 1966; Вейль Г., Симметрия, пер. с англ., М., 1968; Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.

    М. И. Войцеховский.

    Рис. 3. Куб, имеющий прямую AB осью симметрии третьего порядка, прямую CD - осью симметрии четвёртого порядка, точку О - центром симметрии. Точки М и M" куба симметричны как относительно осей AB и CD, так и относительно центра О.

    II Симметри́я

    в физике. Если законы, устанавливающие соотношения между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях (преобразованиях), которым может быть подвергнута система, то говорят, что эти законы обладают С. (или инвариантны) относительно данных преобразований. В математическом отношении преобразования С. составляют группу (См. Группа).

    Опыт показывает, что физические законы симметричны относительно следующих наиболее общих преобразований.

    Непрерывные преобразования

    1) Перенос (сдвиг) системы как целого в пространстве. Это и последующие пространственно-временные преобразования можно понимать в двух смыслах: как активное преобразование - реальный перенос физической системы относительно выбранной системы отсчёта или как пассивное преобразование - параллельный перенос системы отсчёта. С. физических законов относительно сдвигов в пространстве означает эквивалентность всех точек пространства, т. е. отсутствие в пространстве каких-либо выделенных точек (однородность пространства).

    2) Поворот системы как целого в пространстве. С. физических законов относительно этого преобразования означает эквивалентность всех направлений в пространстве (изотропию пространства).

    3) Изменение начала отсчёта времени (сдвиг во времени). С. относительно этого преобразования означает, что физические законы не меняются со временем.

    4) Переход к системе отсчёта, движущейся относительно данной системы с постоянной (по направлению и величине) скоростью. С. относительно этого преобразования означает, в частности, эквивалентность всех инерциальных систем отсчёта (См. Инерциальная система отсчёта) (см. Относительности теория).

    5) Калибровочные преобразования. Законы, описывающие взаимодействия частиц, обладающих каким-либо зарядом (электрическим зарядом (См. Электрический заряд), барионным зарядом (См. Барионный заряд), лептонным зарядом (См. Лептонный заряд), Гиперзаряд ом), симметричны относительно калибровочных преобразований 1-го рода. Эти преобразования заключаются в том, что волновые функции (См. Волновая функция) всех частиц могут быть одновременно умножены на произвольный фазовый множитель:

    где ψ j - волновая функция частицы j , z j - соответствующий частице заряд, выраженный в единицах элементарного заряда (например, элементарного электрического заряда е ), β - произвольный числовой множитель.

    А А + grad f, , (2)

    где f (x , у , z, t ) - произвольная функция координат (х , у , z ) и времени (t ), с - скорость света. Чтобы преобразования (1) и (2) в случае электромагнитных полей выполнялись одновременно, следует обобщить калибровочные преобразования 1-го рода: необходимо потребовать, чтобы законы взаимодействия были симметричны относительно преобразований (1) с величиной β, являющейся произвольной функцией координат и времени: η - Планка постоянная. Связь калибровочных преобразований 1-го и 2-го рода для электромагнитных взаимодействий обусловлена двоякой ролью электрического заряда: с одной стороны, электрический заряд является сохраняющейся величиной, а с другой - он выступает как константа взаимодействия, характеризующая связь электромагнитного поля с заряженными частицами.

    Преобразования (1) отвечают законам сохранения различных зарядов (см. ниже), а также некоторым внутренним С. взаимодействия. Если заряды являются не только сохраняющимися величинами, но и источниками полей (как электрический заряд), то соответствующие им поля должны быть также калибровочными полями (аналогично электромагнитным полям), а преобразования (1) обобщаются на случай, когда величины β являются произвольными функциями координат и времени (и даже операторами (См. Операторы), преобразующими состояния внутренней С.). Такой подход в теории взаимодействующих полей приводит к различным калибровочным теориям сильных и слабых взаимодействий (т. н. Янга - Милса теория).

    Дискретные преобразования

    Перечисленные выше типы С. характеризуются параметрами, которые могут непрерывно изменяться в некоторой области значений (например, сдвиг в пространстве характеризуется тремя параметрами смещения вдоль каждой из координатных осей, поворот - тремя углами вращения вокруг этих осей и т. д.). Наряду с непрерывными С. большое значение в физике имеют дискретные С. Основные из них следующие.

    Симметрия и законы сохранения

    Согласно Нётер теореме (См. Нётер теорема), каждому преобразованию С., характеризуемому одним непрерывно изменяющимся параметром, соответствует величина, которая сохраняется (не меняется со временем) для системы, обладающей этой С. Из С. физических законов относительно сдвига замкнутой системы в пространстве, поворота её как целого и изменения начала отсчёта времени следуют соответственно законы сохранения импульса, момента количества движения и энергии. Из С. относительно калибровочных преобразований 1-го рода - законы сохранения зарядов (электрического, барионного и др.), из изотопической инвариантности - сохранение изотопического спина (См. Изотопический спин) в процессах сильного взаимодействия. Что касается дискретных С., то в классической механике они не приводят к каким-либо законам сохранения. Однако в квантовой механике, в которой состояние системы описывается волновой функцией, или для волновых полей (например, электромагнитного поля), где справедлив Суперпозиции принцип , из существования дискретных С. следуют законы сохранения некоторых специфических величин, не имеющих аналогов в классической механике. Существование таких величин можно продемонстрировать на примере пространственной чётности (См. Чётность), сохранение которой вытекает из С. относительно пространственной инверсии. Действительно, пусть ψ 1 - волновая функция, описывающая какое-либо состояние системы, а ψ 2 - волновая функция системы, получающаяся в результате пространств. инверсии (символически: ψ 2 = Р ψ 1 , где Р - оператор пространств. инверсии). Тогда, если существует С. относительно пространственной инверсии, ψ 2 является одним из возможных состояний системы и, согласно принципу суперпозиции, возможными состояниями системы являются суперпозиции ψ 1 и ψ 2: симметричная комбинация ψ s = ψ 1 + ψ 2 и антисимметричная ψ а = ψ 1 - ψ 2 . При преобразованиях инверсии состояние ψ 2 не меняется (т. к. P ψ s = P ψ 1 + P ψ 2 = ψ 2 + ψ 1 = ψ s), а состояние ψ a меняет знак (P ψ a = P ψ 1 - P ψ 2 = ψ 2 - ψ 1 = - ψ a). В первом случае говорят, что пространственная чётность системы положительна (+1), во втором - отрицательна (-1). Если волновая функция системы задаётся с помощью величин, которые не меняются при пространственной инверсии (таких, например, как момент количества движения и энергия), то вполне определённое значение будет иметь и чётность системы. Система будет находиться в состоянии либо с положительной, либо с отрицательной чётностью (причём переходы из одного состояния в другое под действием сил, симметричных относительно пространственной инверсии, абсолютно запрещены).

    Симметрия квантово-механических систем и стационарные состояния. Вырождение

    Сохранение величин, отвечающих различным С. квантово-механические системы, является следствием того, что соответствующие им операторы коммутируют с гамильтонианом системы, если он не зависит явно от времени (см. Квантовая механика , Перестановочные соотношения). Это означает, что указанные величины измеримы одновременно с энергией системы, т. е. могут принимать вполне определённые значения при заданном значении энергии. Поэтому из них можно составить т. н. полный набор величин, определяющих состояние системы. Т. о., стационарные состояния (См. Стационарное состояние) (состояния с заданной энергией) системы определяются величинами, отвечающими С. рассматриваемой системы.

    Наличие С. приводит к тому, что различные состояния движения квантовомеханической системы, которые получаются друг из друга преобразованием С., обладают одинаковыми значениями физических величин, не меняющихся при этих преобразованиях. Т. о., С. системы, как правило, ведёт к вырождению (См. Вырождение). Например, определённому значению энергии системы может отвечать несколько различных состояний, преобразующихся друг через друга при преобразованиях С. В математическом отношении эти состояния представляют базис неприводимого представления группы С. системы (см. Группа). Это обусловливает плодотворность применения методов теории групп в квантовой механике.

    Помимо вырождения уровней энергии, связанного с явной С. системы (например, относительно поворотов системы как целого), в ряде задач существует дополнительное вырождение, связанное с т. н. скрытой С. взаимодействия. Такие скрытые С. существуют, например, для кулоновского взаимодействия и для изотропного Осциллятор а.

    Если система, обладающая какой-либо С., находится в поле сил, нарушающих эту С. (но достаточно слабых, чтобы их можно было рассматривать как малое возмущение), происходит расщепление вырожденных уровней энергии исходной системы: различные состояния, которые в силу С. системы имели одинаковую энергию, под действием «несимметричного» возмущения приобретают различные энергетические смещения. В случаях, когда возмущающее поле обладает некоторой С., составляющей часть С. исходной системы, вырождение уровней энергии снимается не полностью: часть уровней остаётся вырожденной в соответствии с С. взаимодействия, «включающего» возмущающее поле.

    Наличие в системе вырожденных по энергии состояний, в свою очередь, указывает на существование С. взаимодействия и позволяет в принципе найти эту С., когда она заранее не известна. Последнее обстоятельство играет важнейшую роль, например, в физике элементарных частиц. Существование групп частиц с близкими массами и одинаковыми др. характеристиками, но различными электрическими зарядами (т. н. изотопических мультиплетов) позволило установить изотопическую инвариантность сильных взаимодействий, а возможность объединения частиц с одинаковыми свойствами в более широкие группы привело к открытию SU (3)-C . сильного взаимодействия и взаимодействий, нарушающих эту С. (см. Сильные взаимодействия). Существуют указания, что сильное взаимодействие обладает ещё более широкой группой С.

    Весьма плодотворно понятие т. н. динамической С. системы, которое возникает, когда рассматриваются преобразования, включающие переходы между состояниями системы с различными энергиями. Неприводимым представлением группы динамической С. будет весь спектр стационарных состояний системы. Понятие динамической С. можно распространить и на случаи, когда гамильтониан системы зависит явно от времени, причём в одно неприводимое представление динамической группы С. объединяются в этом случае все состояния квантово-механической системы, не являющиеся стационарными (т. е. не обладающие заданной энергией).

    Лит.: Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.

    С. С. Герштейн.

    III Симметри́я

    в химии проявляется в геометрической конфигурации молекул, что сказывается на специфике физических и химических свойств молекул в изолированном состоянии, во внешнем поле и при взаимодействии с другими атомами и молекулами.

    Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д. (см. Симметрия в математике). Так, молекула аммиака NH 3 обладает симметрией правильной треугольной пирамиды, молекула метана CH 4 - симметрией тетраэдра. У сложных молекул симметрия равновесной конфигурации в целом, как правило, отсутствует, однако приближённо сохраняется симметрия отдельных её фрагментов (локальная симметрия). Наиболее полное описание симметрии как равновесных, так и неравновесных конфигураций молекул достигается на основе представлений о т. н. динамических группах симметрии - группах, включающих не только операции пространственной симметрии ядерной конфигурации, но и операции перестановки тождественных ядер в различных конфигурациях. Например, динамическая группа симметрии для молекулы NH 3 включает также и операцию инверсии этой молекулы: переход атома N с одной стороны плоскости, образованной атомами Н, на другую её сторону.

    Симметрия равновесной конфигурации ядер в молекуле влечёт за собой определённую симметрию волновых функций (См. Волновая функция) различных состояний этой молекулы, что позволяет проводить классификацию состояний по типам симметрии. Переход между двумя состояниями, связанный с поглощением или испусканием света, в зависимости от типов симметрии состояний может либо проявляться в молекулярном спектре (См. Молекулярные спектры), либо быть запрещенным, так что соответствующая этому переходу линия или полоса будет отсутствовать в спектре. Типы симметрии состояний, между которыми возможны переходы, влияют на интенсивность линий и полос, а также и на их поляризацию. Например, у гомоядерных двухатомных молекул запрещены и не проявляются в спектрах переходы между электронными состояниями одинаковой чётности, электронные волновые функции которых ведут себя одинаковым образом при операции инверсии; у молекул бензола и аналогичных соединений запрещены переходы между невырожденными электронными состояниями одного и того же типа симметрии и т. п. Правила отбора по симметрии дополняются для переходов между различными состояниями правилами отбора, связанными со Спин ом этих состояний.

    У молекул с парамагнитными центрами симметрия окружения этих центров приводит к определённому типу анизотропии g -фактора (Ланде множитель), что сказывается на структуре спектров электронного парамагнитного резонанса (См. Электронный парамагнитный резонанс), тогда как у молекул, ядра атомов которых обладают ненулевым спином, симметрия отдельных локальных фрагментов ведёт к определённому типу расщепления по энергии состояний с различными проекциями ядерного спина, что сказывается на структуре спектров ядерного магнитного резонанса (См. Ядерный магнитный резонанс).

    В приближённых подходах квантовой химии, использующих представление о молекулярных орбиталях, классификация по симметрии возможна не только для волновой функции молекулы в целом, но и для отдельных орбиталей. Если у равновесной конфигурации молекулы имеется плоскость симметрии, в которой лежат ядра, то все орбитали этой молекулы разбиваются на два класса: симметричные (σ) и антисимметричные (π) относительно операции отражения в этой плоскости. Молекулы, у которых верхними (по энергии) занятыми орбиталями являются π-орбитали, образуют специфические классы ненасыщенных и сопряжённых соединений с характерными для них свойствами. Знание локальной симметрии отдельных фрагментов молекул и локализованных на этих фрагментах молекулярных орбиталей позволяет судить о том, какие фрагменты легче подвергаются возбуждению и сильнее меняются в ходе химических превращений, например при фотохимических реакциях.

    Представления о симметрии имеют важное значение при теоретическом анализе строения комплексных соединений, их свойств и поведения в различных реакциях. Теория кристаллического поля и теория поля лигандов устанавливают взаимное расположение занятых и вакантных орбиталей комплексного соединения на основе данных о его симметрии, характер и степень расщепления энергетических уровней при изменении симметрии поля лигандов. Знание одной лишь симметрии комплекса очень часто позволяет качественно судить о его свойствах.

    В 1965 P. Вудворд и Р. Хоффман выдвинули принцип сохранения орбитальной симметрии при химических реакциях, подтвержденный впоследствии обширным экспериментальным материалом и оказавший большое влияние на развитие препаративной органической химии. Этот принцип (правило Вудворда - Хоффмана) утверждает, что отдельные элементарные акты химических реакций проходят с сохранением симметрии молекулярных орбиталей, или орбитальной симметрии. Чем больше нарушается симметрия орбиталей при элементарном акте, тем труднее проходит реакция.

    Учёт симметрии молекул важен при поиске и отборе веществ, используемых при создании химических лазеров и молекулярных выпрямителей, при построении моделей органических сверхпроводников, при анализе канцерогенных и фармакологически активных веществ и т. д.

    Лит.: Хохштрассер Р., Молекулярные аспекты симметрии, пер. с англ., М., 1968; Болотин А. Б., Степанов Н. ф.. Теория групп и ее применения в квантовой механике молекул, М., 1973; Вудворд Р., Хоффман Р., Сохранение орбитальной симметрии, пер. с англ., М., 1971.

    Н. Ф. Степанов.

    IV Симметри́я

    в биологии (биосимметрия). На явление С. в живой природе обратили внимание ещё в Древней Греции пифагорейцы (5 в. до н. э.) в связи с развитием ими учения о гармонии. В 19 в. появились единичные работы, посвященные С. растений (французские учёные О. П. Декандоль, О. Браво), животных (немецкий - Э. Геккель), биогенных молекул (французские - А. Вешан, Л. Пастер и др.). В 20 в. биообъекты изучали с позиций общей теории С. (советские учёные Ю. В. Вульф, В. Н. Беклемишев, Б. К. Вайнштейн, голландский физикохимик Ф. М. Егер, английский кристаллографы во главе с Дж. Берналом) и учения о правизне и левизне (советские учёные В. И. Вернадский, В. В. Алпатов, Г. Ф. Гаузе и др.; немецкий учёный В. Людвиг). Эти работы привели к выделению в 1961 особого направления в учении о С. - биосимметрики.

    Наиболее интенсивно изучалась структурная С. биообъектов. Исследование С. биоструктур - молекулярных и надмолекулярных - с позиций структурной С. позволяет заранее выявить возможные для них виды С., а тем самым число и вид возможных модификаций, строго описывать внешнюю форму и внутреннее строение любых пространственных биообъектов. Это привело к широкому использованию представлений структурной С. в зоологии, ботанике, молекулярной биологии. Структурная С. проявляется прежде всего в виде того или иного закономерного повторения. В классической теории структурной С., развитой немецким учёным И. Ф. Гесселем, Е. С. Федоровым (См. Фёдоров) и другими, вид С. объекта может быть описан совокупностью элементов его С., т. е. таких геометрических элементов (точек, линий, плоскостей), относительно которых упорядочены одинаковые части объекта (см. Симметрия в математике). Например, вид С. цветка флокса (рис. 1 , в) - одна ось 5-го порядка, проходящая через центр цветка; производимые посредством её операции - 5 поворотов (на 72, 144, 216, 288 и 360°), при каждом из которых цветок совпадает с самим собой. Вид С. фигуры бабочки (рис. 2 , б) - одна плоскость, делящая её на 2 половины - левую и правую; производимая посредством плоскости операция - зеркальное отражение, «делающее» левую половинку правой, правую - левой, а фигуру бабочки совмещающей с самой собой. Вид С. радиолярии Lithocubus geometricus (рис. 3 , б), помимо осей вращения и плоскостей отражения содержит ещё и центр С. Любая проведённая через такую единственную точку внутри радиолярии прямая по обе стороны от неё и на равных расстояниях встречает одинаковые (соответственные) точки фигуры. Операции, производимые посредством центра С., - отражения в точке, после которых фигура радиолярии также совмещается сама с собой.

    В живой природе (как и в неживой) из-за различных ограничений обычно встречается значительно меньшее число видов С., чем возможно теоретически. Например, на низших этапах развития живой природы встречаются представители всех классов точечной С. - вплоть до организмов, характеризующихся С. правильных многогранников и шара (см. рис. 3 ). Однако на более высоких ступенях эволюции встречаются растения и животные в основном т. н. аксиальной (вида n ) и актиноморфной (вида n (m ) С . (в обоих случаях n может принимать значения от 1 до ∞). Биообъекты с аксиальной С. (см. рис. 1 ) характеризуются лишь осью С. порядка n . Биообъекты сактиноморфной С. (см. рис. 2 ) характеризуются одной осью порядка n и пересекающимися по этой оси плоскостями m . В живой природе наиболее распространены С. вида n = 1 и 1․m = m , называется соответственно асимметрией (См. Асимметрия) и двусторонней, или билатеральной, С. Асимметрия характерна для листьев большинства видов растений, двусторонняя С. - до известной степени для внешней формы тела человека, позвоночных животных и многих беспозвоночных. У подвижных организмов такая С., по-видимому, связана с различиями их движении вверх-вниз и вперёд-назад, тогда как их движения направо-налево одинаковы. Нарушение у них билатеральной С. неизбежно привело бы к торможению движения одной из сторон и превращению поступательного движения в круговое. В 50-70-х гг. 20 в. интенсивному изучению (прежде всего в СССР) подверглись т. н. диссимметрические биообъекты (рис. 4 ). Последние могут существовать по крайней мере в двух модификациях - в форме оригинала и его зеркального отражения (антипода). При этом одна из этих форм (неважно какая) называется правой или D (от лат. dextro), другая - левой или L (от лат. laevo). При изучении формы и строения D- и L-биообъектов была развита теория диссимметризующих факторов, доказывающая возможность для любого D- или L-объекта двух и более (до бесконечного числа) модификаций (см. также рис. 5 ); одновременно в ней содержались и формулы для определения числа и вида последних. Эта теория привела к открытию т. н. биологической изомерии (См. Изомерия) (разных биообъектов одного состава; на рис. 5 изображены 16 изомеров листа липы).

    При изучении встречаемости биообъектов было установлено, что в одних случаях преобладают D-, в других L-формы, в третьих они представлены одинаково часто. Бешаном и Пастером (40-е гг. 19 в.), а в 30-х гг. 20 в. советским учёным Г. Ф. Гаузе и другими было показано, что клетки организмов построены только или преимущественно из L-amинокислот, L-белков, D-дезоксирибонуклеиновых кислот, D-сахаров, L-алкалоидов, D- и L-терпенов и т. д. Столь фундаментальная и характерная черта живых клеток, названная Пастером диссимметрией протоплазмы, обеспечивает клетке, как было установлено в 20 в., более активный обмен веществ и поддерживается посредством сложных биологических и физико-химических механизмов, возникших в процессе эволюции. Сов. учёный В. В. Алпатов в 1952 на 204 видах сосудистых растений установил, что 93,2% видов растений относятся к типу с L-, 1,5% - с D-ходом винтообразных утолщений стенок сосудов, 5,3% видов - к типу рацемическому (число D-сосудов примерно равно числу L-сосудов).

    При изучении D- и L-биообъектов было установлено, что равноправие между D-и L-формами в ряде случаев нарушено из-за различия их физиологических, биохимических и др. свойств. Подобная особенность живой природы была названа диссимметрией жизни. Так, возбуждающее влияние L-amинокислот на движение плазмы в растительных клетках в десятки и сотни раз превосходит такое же действие их D-форм. Многие антибиотики (пенициллин, грамицидин и др.), содержащие D-amинокислоты, обладают большей бактерицидностью, чем их формы c L-amинокислотами. Чаще встречающиеся винтообразные L-kopнеплоды сахарной свёклы на 8-44% (в зависимости от сорта) тяжелее и содержат на 0,5-1% больше сахара, чем D-kopнеплоды.

    симметрия архитектурный фасад сооружение

    Симметрия - понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, т.е. некий элемент гармонии.

    Прошли тысячелетия, прежде чем человечество в ходе своей общественно-производственной деятельности осознало необходимость выразить в определенных понятиях установленные им прежде всего в природе две тенденции: наличие строгой упорядоченности, соразмерности, равновесия и их нарушения. Люди давно обратили внимание на правильность формы кристаллов, геометрическую строгость строения пчелиных сот, последовательность и повторяемость расположения ветвей и листьев на деревьях, лепестков, цветов, семян растений и отобразили эту упорядоченность в своей практической деятельности, мышлении и искусстве.

    Симметрией обладают объекты и явления живой природы. Она не только радует глаз и вдохновляет поэтов всех времен и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

    В живой природе огромное большинство живых организмов обнаруживает различные виды симметрий (формы, подобия, относительного расположения). Причем организмы разного анатомического строения могут иметь один и тот же тип внешней симметрии.

    Принцип симметрии - утверждает, что если пространство однородно, перенос системы как целого в пространстве не изменяет свойств системы. Если все направления в пространстве равнозначны, то принцип симметрии разрешает поворот системы как целого в пространстве. Принцип симметрии соблюдается, если изменить начало отсчета времени. В соответствии с принципом, можно произвести переход в другую систему отсчета, движущейся относительно данной системы с постоянной скоростью. Неживой мир очень симметричен. Нередко нарушения симметрии в квантовой физике элементарных частиц - это проявление еще более глубокой симметрии. Ассиметрия является структурообразующим и созидающим принципом жизни. В живых клетках функционально-значимые биомолекулы асимметричны.: белки состоят из левовращающих аминокислот (L-форма) , а нуклеиновые кислоты содержат в своем составе, помимо гетероциклических оснований, правовращающие углеводы - сахара (Д-форма) , кроме того сама ДНК - основа наследственности является правой двойной спиралью.

    Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических. Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир попросту не смог бы существовать.

    Таким образом, симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то, несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям - к поворотам, переносам, взаимной замене частей, отражениям и т.д.

    Рассмотрим виды симметрии в математике:

    • * центральная (относительно точки)
    • * осевая (относительно прямой)
    • * зеркальная (относительно плоскости)
    • 1. Центральная симметрия (приложение 1)

    Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры.

    Впервые понятие центра симметрии встречается в XVI в. В одной из теорем Клавиуса, гласящей: «если параллелепипед рассекается плоскостью, проходящей через центр, то он разбивается пополам и, наоборот, если параллелепипед рассекается пополам, то плоскость проходит через центр». Лежандр, который впервые ввёл в элементарную геометрию элементы учения о симметрии, показывает, что у прямого параллелепипеда имеются 3 плоскости симметрии, перпендикулярные к ребрам, а у куба 9 плоскостей симметрии, из которых 3 перпендикулярны к рёбрам, а другие 6 проходят через диагонали граней.

    Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм.

    В алгебре при изучении чётных и нечётных функций рассматриваются их графики. График чётной функции при построении симметричен относительно оси ординат, а график нечётной функции - относительно начала координат, т.е. точки О. Значит, нечётная функция обладает центральной симметрией, а чётная функция - осевой.

    2. Осевая симметрия (приложение 2)

    Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а, также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры. Говорят также, что фигура обладает осевой симметрией.

    В более узком смысле осью симметрии называют ось симметрии второго порядка и говорят об «осевой симметрии», которую можно определить так: фигура (или тело) обладает осевой симметрией относительно некоторой оси, если каждой её точке Е соответствует такая принадлежащая этой же фигуре точка F, что отрезок EF перпендикулярен к оси, пересекает её и в точке пересечения делится пополам.

    Приведу примеры фигур, обладающих осевой симметрией. У неразвернутого угла одна ось симметрии -- прямая, на которой расположена биссектриса угла. Равнобедренный (но не равносторонний) треугольник имеет также одну ось симметрии, а равносторонний треугольник-- три оси симметрии. Прямоугольник и ромб, не являющиеся квадратами, имеют по две оси симметрии, а квадрат-- четыре оси симметрии. У окружности их бесконечно много -- любая прямая, проходящая через её центр, является осью симметрии.

    Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник.

    3. Зеркальная симметрия (приложение 3)

    Зеркальной симметрией (симметрией относительно плоскости) называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей относительно этой плоскости точку М1.

    Зеркальная симметрия хорошо знакома каждому человеку из повседневного наблюдения. Как показывает само название, зеркальная симметрия связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура (или тело) зеркально симметрично другой, если вместе они образуют зеркально симметричную фигуру (или тело).

    Игрокам в бильярд издавна знакомо действие отражения. Их «зеркала» -- это борта игрового поля, а роль луча света исполняют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отразившись от неё, движется обратно параллельно направлению первого удара.

    Следует отметить, что две симметричные фигуры или две симметричные части одной фигуры при всем их сходстве, равенстве объемов и площадей поверхностей, в общем случае, неравны, т.е. их нельзя совместить друг с другом. Это разные фигуры, их нельзя заменить друг другом, например, правая перчатка, ботинок и т.д. не годятся для левой руки, ноги. Предметы могут иметь одну, две, три и т.д. плоскостей симметрии. Например, прямая пирамида, основанием которой является равнобедренный треугольник, симметрична относительно одной плоскости Р. Призма с таким же основанием имеет две плоскости симметрии. У правильной шестиугольной призмы их семь. Тела вращения: шар, тор, цилиндр, конус и т.д. имеют бесконечное количество плоскостей симметрии.

    Древние греки полагали, что Вселенная симметрична просто потому, что симметрия прекрасна. Исходя из соображений симметрии, они высказали ряд догадок. Так, Пифагор (5 век до н.э.), считая сферу наиболее симметричной и совершенной формой, делал вывод о сферичности Земли и о ее движении по сфере. При этом он полагал, что Земля движется по сфере некоего «центрального огня». Вокруг того же «огня», согласно Пифагору, должны были обращаться известные в те времена шесть планет, а также Луна, Солнце, звезды.