Хромосомы мужчин и женщин. Хромосомы

Хромосомы - это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений.

Морфология хромосом связана со степенью их спирализации. Например, если в стадии интерфазы (см. Митоз, Мейоз) хромосомы максимально развернуты, т. е. деспирализованы, то с началом деления хромосомы интенсивно спирализуются и укорачиваются. Максимальной спирализации и укорочения хромосомы достигают в стадии метафазы, когда происходит формирование относительно коротких, плотных, интенсивно окрашивающихся основными красителями структур. Эта стадия наиболее удобна для изучения морфологических характеристик хромосом.

Метафазная хромосома состоит из двух продольных субъединиц - хроматид [ выявляет в строении хромосом элементарные нити (так называемые хромонемы, или хромофибриллы) толщиной 200 Å, каждая из которых состоит из двух субъединиц].

Размеры хромосом растений и животных значительно колеблются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в пределах 1,5-10 микрон.

Химической основой строения хромосом являются нуклеопротеиды - комплексы (см.) с основными белками - гистонами и протаминами.

Рис. 1. Строение нормальной хромосомы.
А - внешний вид; Б - внутреннее строение: 1-первичная перетяжка; 2 - вторичная перетяжка; 3 -спутник; 4 - центромера.

Индивидуальные хромосомы (рис. 1) различают по локализации первичной перетяжки, т. е. места расположения центромеры (во время митоза и мейоза к этому месту прикрепляются нити веретена, подтягивая ее при этом к полюсу). При утрате центромеры фрагменты хромосом утрачивают способность расходиться при делении. Первичная перетяжка делит хромосомы на 2 плеча. В зависимости от расположения первичной перетяжки хромосомы подразделяют на метацентрические (оба плеча равной или почти равной длины), субметацентрические (плечи неравной длины) и акроцентрические (центромера смещена на конец хромосомы). Помимо первичной, в хромосомах могут встречаться менее выраженные вторичные перетяжки. Небольшой концевой участок хромосом, отделенный вторичной перетяжкой, называют спутником.

Каждый вид организмов характеризуется своим специфическим (по числу, размерам и форме хромосом) так называемым хромосомным набором. Совокупность двойного, или диплоидного, набора хромосом обозначают как кариотип.



Рис. 2. Нормальный хромосомный набор женщины (в правом нижнем углу две X-хромосомы).


Рис. 3. Нормальный хромосомный набор мужчины (в правом нижнем углу - последовательно Х- и Y-хромосомы).

В зрелых , яйцеклетках и содержится одиночный, или гаплоидный, набор хромосом (n), составляющий половину диплоидного набора (2n), присущего хромосомам всех остальных клеток организма. В диплоидном наборе каждая хромосома представлена парой гомологов, один из которых материнского, а другой отцовского происхождения. В большинстве случаев хромосомы каждой пары идентичны по размерам, форме и генному составу. Исключение составляют половые хромосомы, наличие которых определяет развитие организма в мужском или женском направлении. Нормальный хромосомный набор человека состоит из 22 пар аутосом и одной пары половых хромосом. У человека и других млекопитающих женский определяется наличием двух Х-хромосом, а мужской - одной X-и одной Y-хромосомы (рис. 2 и 3). В женских клетках одна из Х-хромосом генетически неактивна и обнаруживается в интерфазном ядре в виде (см.). Изучение хромосом человека в норме и патологии составляет предмет медицинской цитогенетики. Установлено, что отклонения в числе или структуре хромосом от нормы, возникающие в половых! клетках или на ранних этапах дробления оплодотворенной яйцеклетки, вызывают нарушения нормального развития организма, обусловливая в некоторых случаях возникновение части спонтанных абортов, мертворождений, врожденных уродств и аномалий развития после рождения (хромосомные болезни). Примерами хромосомных болезней могут служить болезнь Дауна (лишняя G-хромосома), синдром Клайнфелтера (лишняя Х-хромосома у мужчин) и (отсутствие в кариотипе Y- или одной из Х-хромосом). В медицинской практике хромосомный анализ проводят или прямым методом (на клетках костного мозга), или после кратковременного культивирования клеток вне организма (периферическая кровь, кожа, эмбриональные ткани).

Хромосомы (от греч. chroma - окраска и soma - тело) - нитевидные, самовоспроизводящиеся структурные элементы клеточного ядра, содержащие в линейном порядке факторы наследственности - гены. Хромосомы отчетливо видны в ядре во время деления соматических клеток (митоза) и во время деления (созревания) половых клеток - мейоза (рис. 1). В том и в другом случае хромосомы интенсивно окрашиваются основными красителями, а также видны на неокрашенных цитологических препаратах в фазовом контрасте. В интерфазном ядре хромосомы деспирализованы и не видны в световой микроскоп, так как их поперечные размеры выходят за пределы разрешающей способности светового микроскопа. В это время отдельные участки хромосом в виде тонких нитей диаметром 100-500 Å можно различить при помощи электронного микроскопа. Отдельные не деспирализовавшиеся участки хромосом в интерфазном ядре видны через световой микроскоп как интенсивно красящиеся (гетеропикнотические) участки (хромоцентры).

Хромосомы непрерывно существуют в клеточном ядре, претерпевая цикл обратимой спирализации: митоз-интерфаза-митоз. Основные закономерности строения и поведения хромосом в митозе, мейозе и при оплодотворении одинаковы у всех организмов.

Хромосомная теория наследственности . Впервые хромосомы описали И. Д. Чистяков в 1874 г. и Страсбургер (Е. Strasburger) в 1879 г. В 1901 г. Уилсон (Е. В. Wilson), а в 1902 г. Саттон (W. S. Sutton) обратили внимание на параллелизм в поведении хромосом и менделевских факторов наследственности - генов - в мейозе и при оплодотворении и пришли к выводу, что гены находятся в хромосомах. В 1915-1920 гг. Морган (Т. Н. Morgan) и его сотрудники доказали это положение, локализовали в хромосомах дрозофилы несколько сот генов и создали генетические карты хромосом. Данные о хромосомах, полученные в первой четверти 20 века, легли в основу хромосомной теории наследственности, согласно которой преемственность признаков клеток и организмов в ряду их поколений обеспечивается преемственностью их хромосомах.

Химический состав и ауторепродукция хромосом . В результате цитохимических и биохимических исследований хромосом в 30 и 50-х годах 20 века установлено, что они состоят из постоянных компонентов [ДНК (см. Нуклеиновые кислоты), основных белков (гистонов или протаминов), негистонных белков] и переменных компонентов (РНК и связанного с ней кислого белка). Основу хромосом составляют дезоксирибонуклеопротеидные нити диаметром около 200 Å (рис. 2), которые могут соединяться в пучки диаметром 500 А.

Открытие Уотсоном и Криком (J. D. Watson, F. Н. Crick) в 1953 г. строения молекулы ДНК, механизма ее авторепродукции (редупликации) и нуклеинового кода ДНК и развитие возникшей после этого молекулярной генетики привело к представлению о генах как участках молекулы ДНК. (см. Генетика). Вскрыты закономерности авторепродукции хромосом [Тейлор (J. Н. Taylor) и др., 1957], оказавшиеся аналогичными закономерностям авторепродукции молекул ДНК (полуконсервативная редупликация).

Хромосомный набор - совокупность всех хромосом в клетке. Каждый биологический вид обладает характерным и постоянным набором хромосом, закрепленным в эволюции данного вида. Различают два основных типа наборов хромосом: одиночный, или гаплоидный (в половых клетках животных), обозначаемый n, и двойной, или диплоидный (в соматических клетках, содержащий пары сходных, гомологичных хромосом от матери и отца), обозначаемый 2n.

Наборы хромосом отдельных биологических видов значительно различаются по числу хромосом: от 2 (лошадиная аскарида) до сотен и тысяч (некоторые споровые растения и простейшие). Диплоидные числа хромосом некоторых организмов таковы: человека - 46, гориллы - 48, кошки - 60, крысы - 42, дрозофилы - 8.

Размеры хромосом у разных видов также различны. Длина хромосом (в метафазе митоза) варьирует от 0,2 мк у одних видов до 50 мк у других, а диаметр от 0,2 до 3 мк.

Морфология хромосом хорошо выражена в метафазе митоза. Именно метафазные хромосомы используют для идентификации хромосом. В таких хромосомах хорошо видны обе хроматиды, на которые продольно расщеплена каждая хромосома и центромер (кинетохор, первичная перетяжка), соединяющий хроматиды (рис. 3). Центромер виден как суженный участок, не содержащий хроматина (см.); к нему крепятся нити ахроматинового веретена, благодаря чему центромер определяет движение хромосом к полюсам в митозе и мейозе (рис. 4).

Потеря центромера, например при разрыве хромосомы ионизирующими излучениями или другими мутагенами, приводит к потере способности куска хромосомы, лишенного центромера (ацентрический фрагмент), участвовать в митозе и мейозе и к потере его из ядра. Это может привести к тяжелому повреждению клетки.

Центромер делит тело хромосомы на два плеча. Расположение центромера строго постоянно для каждой хромосомы и определяет три типа хромосом: 1) акроцентрические, или палочкообразные, хромосомы с одним длинным и вторым очень коротким плечом, напоминающим головку; 2) субметацентрические хромосомы с длинными плечами неравной длины; 3) метацентрические хромосомы с плечами одинаковой или почти одинаковой длины (рис. 3, 4, 5 и 7).


Рис. 4. Схема строения хромосом в метафазе митоза после продольного расщепления центромера: А и А1 - сестринские хроматиды; 1 - длинное плечо; 2 - короткое плечо; 3 - вторичная перетяжка; 4- центромер; 5 - волокна веретена.

Характерными чертами морфологии определенных хромосом являются вторичные перетяжки (не обладающие функцией центромера), а также спутники - маленькие участки хромосом, соединенные с остальным ее телом тонкой нитью (рис. 5). Спутничные нити обладают способностью формировать ядрышки. Характерная структура в хромосоме (хромомеры) - утолщения или более плотно спирализованные участки хромосомной нити (хромонемы). Рисунок хромомер специфичен для каждой пары хромосом.


Рис. 5. Схема морфологии хромосомы в анафазе митоза (хроматида. отходящая к полюсу). А - внешний вид хромосомы; Б - внутреннее строение той же хромосомы с двумя составляющими ее хромонемами (полухроматидами): 1 - первичная перетяжка с хромомерами, составляющими центромер; 2 - вторичная перетяжка; 3 - спутник; 4 - нить спутника.

Число хромосом, их размеры и форма на стадии метафазы характерны для каждого вида организмов. Совокупность этих признаков набора хромосом называется кариотипом. Кариотип можно представить в виде схемы, называемой идиограммой (см. ниже хромосомы человека).

Половые хромосомы . Гены, детерминирующие пол, локализованы в специальной паре хромосом - половых хромосомах (млекопитающие, человек); в других случаях иол определяется соотношением числа половых хромосом и всех остальных, называемых аутосомами (дрозофила). У человека, как и у других млекопитающих, женский пол определяется двумя одинаковыми хромосомами, обозначаемыми как Х-хромосомы, мужской пол определяется парой гетероморфных хромосом: Х и Y. В результате редукционного деления (мейоза) при созревании ооцитов (см. Овогенез) у женщин все яйца содержат по одной Х-хромосоме. У мужчин в результате редукционного деления (созревания) сперматоцитов половина спермиев содержит Х-хромосому, а другая половина Y-хромосому. Пол ребенка определяется случайным оплодотворением яйцеклетки спермием, несущим Х- или Y-хромосому. В результате возникает зародыш женского (XX) или мужского (XY) пола. В интерфазном ядре у женщин одна из Х-хромосом видна как глыбка компактного полового хроматина.

Функционирование хромосом и метаболизм ядра . Хромосомная ДНК является матрицей для синтеза специфических молекул информационной РНК. Этот синтез происходит тогда, когда данный участок хромосомы деспирализован. Примерами локальной активации хромосом служат: образование деспирализованных петель хромосом в ооцитах птиц, амфибий, рыб (так называемые Х-ламповые щетки) и вздутий (пуффов) определенных локусов хромосом в многонитчатых (политенных) хромосомах слюнных желез и других секреторных органов двукрылых насекомых (рис. 6). Примером инактивации целой хромосомы, т. е. выключения ее из метаболизма данной клетки, является образование одной из Х-хромосом компактного тела полового хроматина.

Рис. 6. Политенные хромосомы двукрылого насекомого Acriscotopus lucidus: А и Б - участок, ограниченный пунктирными линиями, в состоянии интенсивного функционирования (пуфф); В - тот же участок в нефункционирующем состоянии. Цифрами обозначены отдельные локусы хромосом (хромомеры).
Рис. 7. Хромосомный набор в культуре лейкоцитов периферической крови мужчины (2n=46).

Вскрытие механизмов функционирования политенных хромосом типа ламповых щеток и других типов спирализации и деспирализации хромосом имеет решающее значение для понимания обратимой дифференциальной активации генов.

Хромосомы человека . В 1922 г. Пейнтер (Т. S. Painter) установил диплоидное число хромосом человека (в сперматогониях), равное 48. В 1956 г. Тио и Леван (Н. J. Tjio, A. Levan) использовали комплекс новых методов исследования хромосом человека: культуру клеток; исследование хромосом без гистологических срезов на тотальных препаратах клеток; колхицин, приводящий к остановке митозов на стадии метафазы и накоплению таких метафаз; фитогемагглютинин, стимулирующий вступление клеток в митоз; обработку метафазных клеток гипотоническим солевым раствором. Все это позволило уточнить диплоидное число хромосом у человека (оно оказалось равным 46) и дать описание кариотипа человека. В 1960 г. в Денвере (США) международная комиссия разработала номенклатуру хромосом человека. Согласно предложениям комиссии, термин «кариотип» следует применять к систематизированному набору хромосом единичной клетки (рис. 7 и 8). Термин «идиотрамма» сохраняется для представления о наборе хромосом в виде диаграммы, построенной на основании измерений и описания морфологии хромосом нескольких клеток.

Хромосомы человека пронумерованы (отчасти серийно) от 1 до 22 в соответствии с особенностями морфологии, допускающими их идентификацию. Половые хромосомы не имеют номеров и обозначаются как Х и Y (рис. 8).

Обнаружена связь ряда заболеваний и врожденных дефектов в развитии человека с изменениями в числе и структуре его хромосом. (см. Наследственность).

См. также Цитогенетические исследования.

Все эти достижения создали прочную базу для развития цитогенетики человека.

Рис. 1. Хромосомы: А - на стадии анафазы митоза в микроспороцитах трилистника; Б - на стадии метафазы первого деления мейоза в материнских клетках пыльцы у традесканции. В обоих случаях видно спиральное строение хромосом.
Рис. 2. Элементарные хромосомные нити с диаметром 100 Å (ДНК + гистон) из интерфазных ядер вилочковой железы теленка (электронная микроскопия): А - изолированные из ядер нити; Б - тонкий срез через пленку того же препарата.
Рис. 3. Хромосомный набор Vicia faba (конские бобы) в стадии метафазы.
Рис. 8. Хромосомы того же, что на рис. 7, набора, систематизированные согласно денверовской номенклатуре в пары гомологов (кариотип).


Как известно, в подавляющем большинстве стран мужчины живут существенно меньше, чем женщины. Разнообразные отчеты медицинских учреждений свидетельствуют: повышенная заболеваемость и смертность наблюдается у мужчин почти по всем известным болезням, кроме разве что некоторых гонококковых инфекций и коклюша. Более того, по данным зоологов, этот дисбаланс здоровья у самцов и самок не ограничивается человеческой популяцией. Так, согласно одному из недавно проведенных масштабных исследований, в 62 из 70 видов (89%), подвергшихся сравнительному анализу (были изучены нематоды, моллюски, ракообразные, насекомые, паукообразные, птицы, рептилии, рыбы и, разумеется, млекопитающие), самцы живут меньше, чем самки.

Из всего сказанного напрашивается вывод: повышенная смертность мужского пола, по-видимому, - универсальное явление в земной фауне. Каковы же причины подобной нелюбви матери-природы к самцам-производителям? Научных теорий, пытающихся так или иначе обосновать этот биологический феномен, к настоящему времени накопилось уже немало. В качестве возможных объяснений предлагались чрезмерно крупные размеры особей мужского пола и/или их слишком яркая расцветка, а также повышенная травмоопасность - самцы подвергаются большему риску из-за того, что на них лежит ответственность за добычу пищи, охрану территории и проч.; свою роль играет и метаболический фактор.

Однако во многом благодаря бурному развитию в последние несколько десятилетий генетики сегодня на первый план вышла так называемая теория дисбаланса генов. Как полагают сторонники этой теории, основная причина высокой смертности самцов-животных - их гетерогаметная конституция, или отсутствие второй Х-хромосомы в генетическом наборе мужского организма (подробнее см. "XY и ХХ").

Иными словами, поскольку в хромосомном наборе самцов, в отличие от самок, вооруженных парой Х-хромосом, имеется только одна половая хромосома - Х (вторая же, исключительно мужская половая хромосома, Y, как следует из многочисленных исследований, за многие миллионы лет эволюции постепенно выродилась, сохранив в своем составе, по сути, лишь минимально необходимую для продолжения рода генную коллекцию), различные повреждения или случайные мутации генов в этой мужской Х-хромосоме с гораздо большей вероятностью остаются безнаказанными и наследуются потомками мужского пола по признаку сцепленности с полом.

Что же касается пресловутой специфической мужской хромосомы, американские биологи предположили, что она, по всей видимости, является сильно усеченной версией описанной незадолго до этого другой половой хромосомы, условно названной Х. Усеченная мужская хромосома получила буквенную приставку Y, мужские особи обзавелись альтернативным обозначением XY (поскольку в их половых клетках было выявлено по одному экземпляру Х и Y хромосом), тогда как женские, обладающие двойным набором Х-хромосом, получили аббревиатуру ХХ.

За многие десятилетия, прошедшие с момента этого важнейшего открытия, генетики не слишком преуспели в пополнении своих скудных знаний о внутренней структуре и особенностях работы хромосом, и лишь к концу прошлого века кропотливый поиск информации стал приносить заметные результаты. Поставленный на поток процесс секвенирования (черновой расшифровки) геномов различных живых организмов позволил ученым за очень короткое время значительно продвинуться в понимании базовых биологических процессов, важнейшим из которых, безусловно, является механизм передачи наследственной информации.

Первый черновой вариант половой Х-хромосомы человека, в котором, впрочем, присутствовали значительные прорехи, был получен генетиками еще в 2001 году. Два года назад группой специалистов под руководством американца Дэвида Пейджа из Массачусетсского технологического университета была впервые расписана полная генетическая последовательность человеческой Y-хромосомы. Уже к концу 2004 года ученые располагали подробной информацией о структуре "обычных" (неполовых) хромосом 5, 6, 7, 9, 10, 13, 14, 19, 20, 21, 22 (все неполовые хромосомы называются аутосомами и формально различаются только номерами.

18 марта 2005 года коллектив ученых, ядро которого составили исследователи из британского Wellcome Trust Sanger Institute (Кембридж), опубликовал в журнале Nature самый подробный на сегодняшний день анализ Х-хромосомы, базирующийся на дешифровке 99,3% ее общего генетического кода. Разложение на первичные составляющие самой большой хромосомы человеческого генома (ее общий размер составляет 155 млн пар оснований) - задача, для решения которой потребовались титанические усилия многих тысяч ученых, а также самые мощные компьютеры и прикладные программы.

Судя по публикации, уже объявленной рядом мировых СМИ сенсационной, "теория дисбаланса" переходит в разряд общепринятых в современной науке. Из 1098 генов, обнаруженных в Х-хромосоме (а это примерно 4% от общего числа всех человеческих генов), более трехсот имеют прямое или косвенное отношение к различным наследственным заболеваниям, что, в свою очередь, составляет более 10% от всех известных науке генных болезней.

Как отмечает руководитель исследовательской группы британского Института Сэнджера д-р Марк Росс, "нарушения генов в Х-хромосоме проявляются в основном у мужчин, поскольку у последних отсутствует "запасная" (здоровая) копия этой хромосомы, тогда как у женских особей негативные последствия генных мутаций в одной Х-хромосоме, как правило, нивелируются благодаря эффективной компенсационной деятельности второй Х-хромосомы".

Пока генетикам удалось четко опознать 168 таких "плохих генов" в Х-хромосоме. Наиболее характерные примеры сугубо мужских заболеваний, виновником которых являются эти гены, - гемофилия, дистрофия Дюшенна, при которой происходит атрофия мышц, синдром Данкана (болезнь иммунной системы), синдром Альпорта (заболевание почек) и т. д.

Кроме того, мутации генов Х-хромосомы - причина различных форм умственной отсталости, которым также более подвержены мужчины. Так, по словам академика РАМН директора медико-генетического научного центра Евгения Гинтера, к настоящему времени в Х-хромосоме уже выявлено более трех десятков генов, в той или иной степени имеющих отношение к этой болезни, и, скорее всего, черный список еще пополнится.

И наконец, одно из самых неприятных открытий: около 10% генов Х-хромосомы принадлежат к особому семейству, представители которого подозреваются в причастности к онкологическим заболеваниям. Впрочем, сведения, которыми располагает современная медицина об этих генах, пока крайне скудны, поэтому делать далеко идущие выводы на сей счет ученые не торопятся.

Из не слишком большого объема позитивной информации, представленной авторами расшифровки Х-хромосомы, самыми растиражированными, безусловно, следует считать уточненные данные о функционировании в женском организме второй Х-хромосомы. Ученых долгое время озадачивал тот факт, что у женщин две Х-хромосомы, содержащие двойной набор одинаковых генов, тогда как мужчины вынуждены обходиться куцым Y-огрызком, в котором насчитывается на порядок меньшее число генов (по данным на 2003 год, в Y-хромосоме найдено всего 78 генов, причем 54 имеют функциональные соответствия в Х-наборе). Иными словами, получается, что у всякой женщины в целом на 4-5% больше генов, чем у любого мужчины.

В начале 60-х годов прошлого века британский генетик Мэри Лайон, изучавшая генетические факторы, влияющие на специфику окраски шерсти у самок мышей, пришла к весьма неожиданному выводу: в каждой клетке организма самок работает только одна Х-хромосома, а вторая молчит, будучи практически полностью инактивированной. Причем, как выяснилось позднее, это отключение второй Х-хромосомы в клетках женских особей, срабатывающее практически у всех млекопитающих (в том числе и homo sapiens), происходит еще в процессе эмбрионального развития.

Конкретные генетические механизмы, обеспечивающие отключение запасных Х-хромосом в женских клетках, пока изучены лишь в самых общих чертах. Так, лишь в середине 90-х годов генетиками было установлено, что главный контролер этого процесса - особый ген Xist, расположенный в самой Х-хромосоме. Этот ген продуцирует очень крупные молекулы специфической РНК (также называемой XIST, только большими буквами), действующей лишь на ту Х-хромосому, которая его и произвела. Расползаясь вдоль по хромосоме от места синтеза, молекулы XIST окутывают ее, подобно кокону и тем самым лишают работоспособности.

Однако, согласно новейшим исследованиям генетиков, подтвержденным в том числе и авторами публикации в Nature, на самом деле весь этот процесс инактивации вторых Х-хромосом в женских клетках далеко не так совершенен: многие гены вроде бы неактивной Х-хромосомы каким-то образом ускользают от Xist и как ни в чем ни бывало продолжают производить белки, дублирующие продукцию их аналогов в нормальной Х-хромосоме.

Один из авторов статьи в Nature профессор Duke University (США) Хантингтон Уиллард полагает, что, "возможно, именно в несовпадении уровня генной экспрессии между полами и кроется причина их различий как в гендерном плане (социальных моделях поведения мужчин и женщин), так и в базовых механизмах защиты организма от наследственных заболеваний".

Доля таких "невыключенных" генов в запасных женских Х-хромосомах, по утверждению специалистов из Института Сэнджера, составляет от 15 до 25% (15% - это нижняя планка; у многих обследованных женщин наблюдалась более высокая генная активность). Опять-таки причины и механизмы этого генного разнобоя в работе женских Х-хромосом пока остаются невыясненными. Комментируя очередную загадку природы, академик Гинтер лишь недоуменно пожал плечами: "Исходя из полученных результатов, можно говорить, что в целом уровень экспрессии генов у женщин больше, чем у мужчин, и у разных женщин эта доза также сильно разнится, но вроде живут-то они – одинаково".

Еще одна важнейшая тема, внимание к которой было в очередной раз привлечено последними исследованиями генной структуры Х-хромосомы, - особенности исторической эволюции половых хромосом человека. По мнению Евгения Гинтера, именно эволюционный блок мартовской публикации представляет наибольший интерес для большой науки.

Согласно наиболее популярной сегодня теории происхождения полов, изначально, то бишь с момента зарождения жизни на нашей планете, и, скорее всего, примерно до середины периода господства динозавров (300 млн лет до н. э.) специального генетического механизма разделения полов на Земле не было в принципе. У тех же рептилий (в том числе и современных) пол потомства определяется исключительно температурой внешней среды, в которой созревает оплодотворенное яйцо: при одной температуре из яйца вылупляется самка, при другой - самец.

В какой-то до сих пор не вполне понятный для науки момент у ряда наиболее прогрессивных видов, к числу которых следует отнести блох, бабочек, птиц и, разумеется, новых героев эволюции - млекопитающих, из общего стандартного набора хромосом по также не вполне понятным причинам выделились половые хромосомы.

В частности, как полагают генетики, хромосомными предками современных человеческих половых хромосом X и Y были неспециализированные аутосомы N1 и N4 курицы. Причем вначале эти новые половые хромосомы ничем друг от друга не отличались, кроме того, что Y несла ген детерминации мужского пола, а X - нет. Об этой же изначальной аналогичности свидетельствует и то, что более половины из немногих сохранившихся сегодня на Y-хромосоме генов имеет пару на хромосоме Х.

Однако в ходе последующей эволюции в изначально практически идентичных генах этих хромосом начали накапливаться мутации, и генетические структуры X и Y стали все больше и больше отличаться друг от друга.

Многие генетики полагают, что печальная судьба непарной Y-хромосомы была предрешена сразу же после разделения хромосом на половые и соматические. Не имея, в отличие от Х-хромосомы, эффективных механизмов для ремонта и восстановления поврежденных генов, Y-хромосома стала постепенно терять один за другим эти "единицы наследственности" и, по прогнозам фаталистов, в ближайшие пару сотен тысяч лет должна будет превратиться либо в генетическую пустышку, не несущую никакой наследственной информации, либо вообще полностью исчезнуть из генома.

Если исходить из формальных соображений, теория скорой гибели мужского пола, безусловно, выглядит вполне логичной. Действительно, если взять за основу человеческий геном, то, по сути, в Y-хромосоме почти не осталось "осмысленных записей", тогда как изначально на ней, так же как и на Х-хромосоме, располагалось около 1000 генов. Большинство же из оставшихся сегодня 78 генов Y-хромосомы имеют крайне узкую специализацию и отвечают за образование сперматозоидов и развитие семенников.

Мужская хромосома, пресловутый Y, отличается от прочих 45, включенных в генный набор нормального человека. Она не имеет себе пару. Именно ей в большей степени свойственны разнообразные мутации. Как говорят некоторые исследователи, в ближайшем будущем цивилизация столкнется с полным исчезновением этого элемента. С другой стороны, новейшие исследования показали, что репродуктивный процесс запросто может протекать без участия этой хромосомы.

Что говорят ученые?

По мнению исследователей, мужские хромосомы пропадут в ближайшие десять миллионов лет. Конечно, уверенности в этом быть не может, но прогнозы подтверждены довольно достоверными расчетами. Произойдет это по причине утери элементом структуры ДНК функциональности.

Уже сегодня достоверно известно, что мужские хромосомы существенно отличаются от прочих, включая Х, так как не могут вступать в обмен генетической информацией во время репродуктивного процесса. Это привело к утере наследственного материала и накоплению разнообразных мутаций, передаваемых между поколениями. Впрочем, ученые обращают внимание: наличие именно этой хромосомы, а точнее, ее отсутствие, не станет препятствием для заведения потомства.

Новейшие исследования

Зачастую после этого идет довольно неправдоподобная информация о космических пришельцах, но не в нашем случае. Ученые и в самом деле выяснили, когда именно сформировались хромосомы как инструмент определения половой принадлежности плода. Ранее бытовало мнение, что такое произошло впервые три миллиона столетий тому назад. Проведенные в недавнем прошлом исследовательские работы показали: за 166 миллионов лет до нашего времени и мужские хромосомы, и женские в генофонде нашего рода отсутствовали.

Многие придерживаются теории, гласящей, что половые (мужские, женские) хромосомы в качестве источника имеют один и тот же генный набор. В древности эволюция млекопитающих привела к появлению гена, аллель которого стала основанием для мужского типа организма. Аллель в современной науке называется Y, вторую же стали обозначать Х. То есть фактически в начале были практически идентичные хромосомы, отличие - в одном гене. Со временем Y стал носителем генной информации, более полезной для мужской половины рода, но не имеющей важности или вредной для женского.

Некоторые особенности человеческого организма

Исследователи, выясняя специфические характеристики мужских и женских хромосом, обнаружили, что Y не способен рекомбинировать с Х в период гаметогенеза, то есть в тот момент, когда половые клетки вызревают. Следовательно, возможные изменения провоцируются исключительно мутациями. Генетическая информация, формируемая в ходе такого процесса, не может оцениваться природными механизмами как брак, не происходит и разбавления генными вариациями. Следовательно, отец передает сыну полный набор - и так раз за разом, поколение за поколением. Постепенно количество видоизменений накапливается.

Процесс вызревания половых клеток сопряжен с делением, характерным сперматозоидам. Каждое такое деление - еще одна возможность дополнительных мутаций, скапливающихся в мужской половой хромосоме. Свою роль играет и кислотность среды, в которой происходит этот процесс - этот фактор дополнительно провоцирует незапланированные мутации. Ученые выяснили, что статистически именно Y - наиболее часто повреждаемая хромосома из всего генного набора.

Было, стало, будет

В настоящее время количество генов в Y-хромосоме, как говорят ученые, не менее 45, но и не более 90. Конкретные оценки несколько отличаются, это зависит от используемых исследователями методов. А вот в женской половой хромосоме содержится едва ли не полторы тысячи генов. Такая разница обусловлена эволюционными процессами, приведшими к утере генных сведений.

В прежние времена ученые, изучая динамику Y-хромосомы, оценили, что в среднем за один миллион лет теряется около 4,6 гена. Если такая прогрессия сохранится в будущем, полностью генетическая информация через этот объект перестанет переноситься уже в ближайшие десять миллионов лет.

Альтернативный подход

Конечно, X и Y - хромосомы, исследование которых в принципе стало доступно человечеству совсем недавно, поэтому преимущественно ученые располагают только теоретическими выкладками, не имея подтвержденных практическими наблюдениями данных, что всегда связано с небольшой вероятностью ошибки и разночтений. Уже сейчас некоторые убеждены, что озвученное выше мнение некорректное.

Специализированные исследования проводились в институте Уайтхеда. Ученые, исследуя мужской набор хромосом, пришли к выводу, что генетический распад полностью прекратился. Это был лишь эволюционный этап, связанный с особенностями человеческого организма, и в настоящее время достигнуто стабильное состояние, которое таким и сохранится не менее чем на десять миллионов лет.

Как это происходило

Упомянутое альтернативное исследование, посвященное X и Y хромосомам, предполагало секвенирование 11000000 пар оснований мужской хромосомы. В качестве экспериментальных образцов брали генетические данные макак-резусов. Последовательность, которую получили в ходе работы, сравнили с соответствующим участком мужской хромосомы шимпанзе, а в качестве контрольного взяли образец человеческой генетической информации. На основании полученных данных удалось подтвердить предположение о постоянстве генетического наполнения хромосом мужчин вот уже 25 миллионов лет.

Один из авторов этого исследования - Дженнифер Хьюз, объяснившая, что Y (обозначение мужской хромосомы) потерял всего лишь один ген, что разительно отличается от подопытных образцов, полученных от макак. Это свидетельствует, что в ближайшее (впрочем, называть так временные промежутки, измеряемые миллионами лет, можно лишь условно) время никакой потери хромосомы человечеству не грозит.

Страшно ли это?

В настоящее время ученые знают точно, какая хромосома отвечает за пол будущего ребенка: это зависит как раз от этой самой 23-ей пары, которая в мужском организме представлена вовсе даже и не одинаковой парой, ведь для женщин характерны ХХ, а для мужчин - XY. Поэтому теории о возможном исчезновении Y у многих вызывают опасения: не вымрет ли тогда человечество? Не станем ли мы однополыми?

Ученые заверяют: никаких поводов для беспокойства нет. Не так давно исследования, организованные в научном институте на Гавайях, наглядно показали, что здоровое потомство вполне возможно при наличии двух генов мужской хромосомы - и это применительно к мышам. Значит, в будущем удастся и вовсе обойти эту хромосому, успешно размножаясь без нее. Касается это в том числе и человека. Ученые обращают внимание: такие результаты исследования важны не только для тех, кто опасается за судьбу человечества в далеком будущем. Вполне возможно, они помогут найти ответ на вопросы об устранении мужского бесплодия.

Как проводился эксперимент

Рабочий процесс исследователей предполагал взаимодействие с репродуктивными клетками мышей мужского пола. Над ними провели работу, оставили от мужской хромосомы только два гена. Один из них отвечает за формирование мужского строения организма, в том числе гормональное развитие, сперматогенез, а второй - за фактор пролиферации.

В ходе исследований стало ясно, что обуславливающий пролиферацию спермогониев ген - единственный, в котором репродуктивная система мышей по-настоящему нуждается для формирования потомства.

Что происходило дальше?

Чтобы проверить результаты своих теоретических выводов, в лабораторных условиях ученые оплодотворили мышиные яйцеклетки с использованием усовершенствованных мужских хромосом. Для этого использовали высокоточный способ интрацитоплазматической инъекции. Эмбрионы, которые развились, были имплантированы в организм женских особей - в матку.

Статистика показала: 9% всех случаев беременности оказались успешными, а потомство родилось полностью здоровым. А вот если репродуктивный процесс происходит с участием такого самца мыши, чья хромосома не подвергалась изменению, процент успешных беременностей без отклонений в развитии потомства - всего лишь 26%. Это наглядно свидетельствует, что мужская половая хромосома в будущем, возможно, станет лишь пережитком прошедших тысячелетий. Вероятно, удастся найти на других хромосомах такие ответственные за генную информацию элементы, которые имеют соответствие с мужской хромосомой. Если активировать их функциональность, рассматриваемый объект и вовсе станет лишним.

Онкология и генетика

Некоторое время назад были опубликованы исследования, из которых следует зависимость вероятности развития злокачественных новообразований и потеря мужской хромосомы. Такое иногда наблюдается в пожилом возрасте. Страдают в первую очередь лейкоциты. Ученые также выяснили, что это является одной из причин ранней смертности: мужчины с генными изменениями обычно умирают раньше, а вот женщины живут дольше.

Впервые указанное явление описали еще около полувека тому назад, но последствия, равно как и причины, и по сей день остаются для общественности тайной за семью печатями. В рамках исследования в Швеции были взяты образцы крови 1153 человек в возрасте 70-84 лет. Исследовались только образцы крови мужчин, причем выборка была по людям, регулярно наблюдавшимся в клиниках державы как минимум с сорокалетнего возраста. Собранные сведения наглядно показали, что утрата мужской хромосомы характерна тем, чья продолжительность жизни приблизительно на 5,5 лет меньше в сравнении с мужчинами, не столкнувшимися с таким изменением. Если количество лейкоцитов с измененной генной информацией увеличивалось, повышалась вероятность летального исхода, спровоцированного злокачественными процессами.

Стереотипы и достоверная информация

Принято думать, что Y - хромосома, которая определяет половую принадлежность ребенка, и этим ее функции исчерпаны. На самом деле генетическая информация, хранимая ею, важна для многих функций. Ученые надеятся, что именно благодаря изучению особенностей этой хромосомы можно будет изобрести эффективное лекарство против опухолей. Врачи предполагают, что потеря хромосомы с возрастом приводит к ослаблению иммунной системы. Это, в свою очередь, создает условия для роста злокачественных клеток.

Елена Шведкина об одном из самых распространенных генетических заболеваний - больные жалуются на бесплодие, эректильную дисфункцию, гинекомастию и остеопороз

Синдром Клайнфельтера  - генетическое заболевание, характеризующееся дополнительной женской половой хромосомой Х (одной или даже несколькими) в мужском кариотипе ХY . При этом в мужских половых железах - яичках - образуется недостаточно половых гормонов.

Как известно, генетический набор человека насчитывает 46 хромосом, из которых 22 пары называются соматическими, а 23‑я пара - половая. Женщины имеют пару половых хромосом ХХ , а мужчины - ХY . Для синдрома Клайнфельтера обязательно наличие мужской Y-хромосомы, поэтому, несмотря на дополнительные Х -хромосомы, пациенты всегда являются мужчинами.

Классификация: виды кариотипов при синдроме Клайнфельтера

По количеству дополнительных Х-хромосом различают следующие варианты синдрома Клайнфельтера:

  • 47,ХХY  - наиболее часто встречающийся
  • 48,ХХХY
  • 49,ХХХХY

Кроме того, к синдрому Клайнфельтера также относят мужские кариотипы, включающие, помимо дополнительных Х -хромосом, дополнительную Y -хромосому - 48,ХХYY . И, наконец, среди пациентов с этим синдромом встречаются лица с мозаичным кариотипом 46,ХY /47,ХХY (то есть часть клеток имеет нормальный хромосомный набор).

История открытия синдрома

Синдром получил свое название в честь Гарри Клайнфельтера - врача, в 1942 году впервые описавшего клиническую картину болезни. Клайнфельтер с коллегами опубликовали отчет об обследовании 9 мужчин, объединенных общими симптомами, такими как слабое оволосение тела, евнухоидный тип телосложения, высокий рост и уменьшенные в размерах яички. Позднее, в 1956 г., генетики Планкетт и Барр (Е. R. Plankett, М. L. Barr) обнаружили у мужчин с синдромом Клайнфельтера тельца полового хроматина в ядрах клеток слизистой оболочки полости рта, а в 1959 году Полани и Форд (P. E. Polanyi, S. E. Ford) с сотрудниками показали, что у больных в хромосомном наборе имеется лишняя Х -хромосома.

Активные исследования данной патологии велись в 70‑х годах в США. Тогда всех новорожденных мальчиков подвергали кариотипированию, в результате чего удалось достоверно выявить распространенность и генетические особенности синдрома Клайнфельтера.

Любопытно, что мыши также могут иметь синдром трисомии по половым хромосомам XXY, что позволяет эффективно использовать их в качестве моделей для исследования синдрома Клайнфельтера.

Распространенность заболевания

Синдром Клайнфельтера является одним из наиболее распространенных генетических заболеваний: на каждые 500 новорождённых мальчиков приходится 1 ребёнок с данной патологией.

Кроме того, синдром Клайнфельтера - третья по распространенности эндокринная патология у мужчин (после сахарного диабета и патологии щитовидной железы) и наиболее частая причина врожденного нарушения репродуктивной функции у мужчин.

На сегодняшний день около половины случаев синдрома Клайнфельтера остаются нераспознанными. Часто такие пациенты обращаются за помощью по поводу бесплодия, эректильной дисфункции, гинекомастии, остеопороза, анемии и пр. без установленного ранее диагноза.

Этиология и причины нарушения

Синдром Клайнфельтера относится к генетическим заболеваниям, не передающимся по наследству, поскольку больные, за редким исключением, бесплодны. Патология, как правило, возникает в результате нарушения расхождения хромосом на ранних стадиях формирования яйцеклеток и сперматозоидов. При этом синдром Клайнфельтера, возникающий за счет нарушения в женских половых клетках, встречается в три раза чаще. Мозаичные формы обусловлены патологией деления клеток на ранних стадиях эмбриогенеза, поэтому часть клеток у таких пациентов имеет нормальный кариотип. Причины нерасхождения половых хромосом и нарушения деления клеток на самых ранних стадиях эмбриогенеза до сих пор малоизучены. В отличие от других хромосомных заболеваний, влияние возраста родителей отсутствует или выражено незначительно.

Ранние признаки

В отличие от большинства заболеваний, связанных с нарушением количества хромосом, внутриутробное развитие детей с синдромом Клайнфельтера проходит нормально, склонности к преждевременному прерыванию беременности не наблюдается. Так что в младенческом и раннем детском возрасте заподозрить патологию практически невозможно. Более того, клинические признаки классического синдрома Клайнфельтера проявляются, как правило, только в подростковом периоде. Однако есть симптомы, которые позволяют заподозрить наличие синдрома Клайнфельтера в препубертатном периоде:

  • высокий рост (пик прибавки роста приходится на период между 5–8 годами);
  • длинные ноги (непропорциональное телосложение);
  • высокая талия.

У части пациентов наблюдается некоторая задержка в развитии речи.

В подростковом возрасте синдром часто проявляется гинекомастией, которая при данной патологии имеет вид двустороннего симметричного безболезненного увеличения грудных желез. Так как такого рода гинекомастия часто наблюдается у совершенно здоровых подростков, этот симптом часто остается без внимания. В норме подростковая гинекомастия бесследно исчезает в течение нескольких лет, у пациентов же с синдромом Клайнфельтера обратной инволюции грудных желез не происходит. В некоторых случаях гинекомастия может не развиваться вовсе, и тогда патология проявляется признаками андрогенной недостаточности уже в постпубертатный период.

Симптомы андрогенной недостаточности при синдроме Клайнфельтера

Андрогенная недостаточность при синдроме Клайнфельтера связана с постепенной атрофией яичек, что приводит к снижению синтеза тестостерона. Степень недостаточности андрогенов резко варьирует.

В первую очередь обращают на себя внимание внешние признаки гипогонадизма:

  • скудная растительность на лице или же полное ее отсутствие;
  • рост волос на лобке по женскому типу;
  • волосы на груди и других частях тела отсутствуют;
  • маленький объем яичек (2–4 мл) и их плотная консистенция (патогномоничный признак).

Поскольку дегенерация половых желез, как правило, развивается в постпубертатный период, у большинства пациентов размеры мужских половых органов, за исключением яичек, соответствуют возрастным нормам.

Пациенты могут жаловаться на ослабление либидо и снижение потенции. У многих мужчин с синдромом Клайнфельтера половое влечение вовсе не возникает, а некоторые - напротив, заводят семью и живут нормальной половой жизнью. Наиболее постоянный признак патологии - бесплодие, именно оно чаще всего становится причиной обращения таких пациентов к врачу. У 10 % мужчин с азооспемией обнаруживают синдром Клайнфельтера.

Всем пациентам с нарушениями сперматогенеза необходимо определять кариотип для исключения или подтверждения диагноза синдрома Клайнфельтера.

Недостаток андрогенов приводит к развитию остеопороза, анемии и слабости скелетной мускулатуры. У трети больных можно наблюдать варикозное расширение вен голеней.

Андрогены влияют на обмен веществ, поэтому больные с синдромом Клайнфельтера склонны к ожирению, нарушению толерантности к глюкозе и сахарному диабету второго типа.

Доказана предрасположенность таких пациентов к аутоиммунным заболеваниям (ревматоидный артрит, системная красная волчанка, аутоиммунные заболевания щитовидной железы и другие).

Психологические особенности

Коэффициент интеллекта у больных с классическим синдромом Клайнфельтера варьирует от значений ниже среднего до показателей, значительно превышающих средний уровень. Однако во всех случаях отмечается диспропорция между общим уровнем интеллекта и вербальными способностями, так что нередко пациенты с достаточно высоким IQ испытывают трудности при восприятии больших объемов материала на слух, а также при построении фраз, содержащих сложные грамматические конструкции. Такие особенности причиняют пациентам много неприятностей в период обучения и нередко продолжают сказываться на профессиональной деятельности.

Данные о психологических особенностях больных с синдромом Клайнфельтера достаточно противоречивы, однако большинство специалистов оценивают пациентов как скромных, робких людей с несколько заниженной самооценкой и повышенной чувствительностью. Есть данные, свидетельствующие о склонности пациентов с синдромом Клайнфельтера к гомосексуализму, алкоголизму и наркомании. Сложно сказать, вызваны ли особенности психики у таких больных непосредственным влиянием хромосомной аномалии, или же это реакция на проблемы в сексуальной сфере.

В отношении разных цитогенетических вариантов синдрома Клайнфельтера справедливо правило, что с увеличением количества дополнительных Х -хромосом увеличивается количество и выраженность патологических симптомов.

Диагностика синдрома Клайнфельтера

Во многих странах синдром Клайнфельтера часто диагностируется ещё до рождения ребёнка, так как многие женщины позднего детородного возраста, в связи с высоким риском генетических дефектов у будущего потомства, используют пренатальную генетическую диагностику плода. Нередко пренатальное выявление синдрома Клайнфельтера является поводом для прерывания беременности, в том числе и по рекомендации врачей. В России анализ кариотипа будущего ребёнка проводится крайне редко.

При подозрении на синдром Клайнфельтера проводят лабораторный анализ крови для определения уровня мужских половых гормонов. Необходима дифференциальная диагностика с другими заболеваниями, протекающими с проявлениями андрогенной недостаточности. Точный диагноз синдрома Клайнфельтера ставят на основании изучения кариотипа (набора хромосом) больного.

Исследования, необходимые для подтверждения диагноза

У всех мужчин с резко повышенными концентрациями гонадотропинов необходимо исключить синдром Клайнфельтера, так как нередко первый лабораторный признак этой генетической патологии - повышение в крови концентрации гонадотропинов при нормальном содержании общего тестостерона.

Синдром Клайнфельтера необходимо дифференцировать от других форм первичного гипогонадизма. В любом случае при повышении уровня ФСГ в крови необходимо определение кариотипа для исключения в первую очередь синдрома Клайнфельтера.

Лечение

Цели лечения синдрома Клайнфельтера:

  • Восстановление нормального содержания тестостерона
  • Восстановление сексуальной функции
  • Ликвидация метаболических нарушений

При клинически выраженной патологии необходима пожизненная заместительная терапия препаратами тестостерона. Адекватная терапия позволяет не только улучшить внешний вид и общее самочувствие больного, но и вернуть способность к нормальной половой жизни. Кроме того, заместительная терапия предупреждает развитие остеопороза, купирует мышечную слабость. В юном возрасте лечение необходимо начинать сразу же после постановки диагноза. При синдроме Клайнфельтера лучше использовать препараты тестостерона длительного действия:

  • смесь эфиров тестостерона в виде масляного раствора, инъекции которого необходимо делать 2–3 раза в месяц;
  • тестостерона ундеканоат в виде масляного раствора - препарат-депо с замедленным высвобождением действующего вещества - инъекции 1 раз в 3 месяца.

Гормонолечение при наличии Х хромосомы у мужчин должно носить постоянный характер. Дозу препарата подбирают индивидуально под контролем уровня тестостерона и ЛГ в сыворотке крови.

Уже развившаяся гинекомастия при синдроме Клайнфельтера не подвергается инволюции даже в случае адекватного лечения, поэтому часто приходится прибегать к хирургической коррекции (мастэктомии).

Для профилактики таких сопутствующих заболеваний, как ожирение и сахарный диабет второго типа, больным рекомендуют придерживаться диеты и следить за собственным весом.

Мониторинг пациентов с синдромом Клайнфельтера следует осуществлять не реже 1 раза в 6–12 месяцев. Он должен включать следующие исследования:

  • общий анализ крови для оценки уровня гемоглобина и гематокрита;
  • гормональный анализ крови, включающий определение тестостерона и ЛГ (проводится на фоне лекарственной терапии за 1–2 дня до очередной инъекции тестостерона);

Хромосомы — это нитевидные молекулы, несущие наследственную информацию для всего: от роста до цвета глаз. Они сделаны из белка и одной молекулы ДНК, которая содержит генетические инструкции организма, переданные от родителей. У людей, животных и растений большинство хромосом расположены в парах внутри ядра клетки. У людей есть 22 из этих хромосомных пар, называемых аутосомами.

У людей 22 пары хромосом и две половые хромосомы. Женщины имеют две Х-хромосомы; мужчины имеют Х-хромосому и Y-хромосому.

Как определяется пол

У людей есть дополнительная пара половых хромосом, в общей сложности 46 хромосом. Половые хромосомы называются X и Y, и их комбинация определяет пол человека. Как правило, у женщин две Х-хромосомы, а мужчины обладают XY-хромосомами. Эта система определения пола XY встречается у большинства млекопитающих, а также для некоторых рептилий и растений.

Наличие хромосом XX или XY определяется, когда сперма оплодотворяет яйцо. В отличие от других клеток тела, клетки в яйце и сперме, называемые гаметами или половыми клетками, обладают только одной хромосомой. Гаметы производятся делением клеток мейоза, что приводит к тому, что разделенные клетки имеют половину числа хромосом в качестве родительских или предшественников. В случае с людьми это означает, что родительские клетки имеют две хромосомы и у них есть одна гамета.

Все гаметы в яйцах матери имеют Х-хромосомы. Сперма отца содержит около половины X и половины Y-хромосом. Сперма является переменным фактором при определении пола ребенка. Если сперма несет Х-хромосому, она будет сочетаться с Х-хромосомой яйца с образованием женской зиготы. Если сперма несет Y-хромосому, это приведет к рождению мальчика.

Во время оплодотворения гаметы из спермы объединяются с гаметами из яйца, образуя зиготу. Зигота содержит два набора из 23 хромосом для требуемых 46. Большинство женщин составляют 46XX, а большинство мужчин — 46XY, согласно Всемирной организации здравоохранения.

Однако есть некоторые варианты. Недавние исследования показали, что у человека может быть множество различных комбинаций половых хромосом и генов, особенно тех, кто идентифицирует себя как ЛГБТ. Например, определенная Х-хромосома, называемая Xq28, и ген на хромосоме 8, по-видимому, обнаруживается в более высокой распространенности у геев, согласно исследованию 2014 года в журнале Psychological Medicine.

Несколько младенцев из тысячи рождаются с одной половой хромосомой (45X или 45Y), это называатся моносомией. Другие рождаются с тремя или более половыми хромосомами (47XXX, 47XYY или 47XXY и т. д.), это называетя полисомией. «Кроме того, некоторые мужчины рождаются с 46XX из-за транслокации крошечной части пола, определяющего область Y-хромосомы», — сообщает ВОЗ. «Точно так же некоторые женщины также рождаются 46XY из-за мутаций в Y-хромосоме. Очевидно, что не только женщины, которые являются XX, а мужчины XY, но, скорее, существует ряд дополнений хромосом, гормональных балансов и фенотипических вариаций».

Структура хромосом X и Y

В то время как хромосомы для других частей тела имеют одинаковый размер и форму, образуя идентичное спаривание — хромосомы X и Y имеют разные структуры.

Х-хромосома значительно длиннее, чем Y-хромосома, и содержит еще сотни генов. Поскольку дополнительные гены в Х-хромосоме не имеют аналогов в Y-хромосоме, Х-гены являются доминирующими. Это означает, что почти любой ген на X, даже если он рецессивный у самки, будет выражен у самцов. Они называются X-связанными генами. Гены, обнаруженные только на Y-хромосоме, называются Y-связанными генами и выражены только у самцов. Гены на любой половой хромосоме можно назвать половыми генами.

Есть приблизительно 1,098 Х-связанных генов, хотя большинство из них не для женских анатомических характеристик. Фактически, многие из них связаны с такими нарушениями, как гемофилия, мышечная дистрофия Дюшенна и ряд других. Они чаще всего встречаются у мужчин. Неполовые особенности Х-связанных генов также отвечают за облысение мужского пола.

В отличие от большой Х-хромосомы, Y-хромосома содержит только 26 генов. Шестнадцать из этих генов отвечают за поддержание клеток. Девять вовлечены в производство спермы, а если некоторые из них отсутствуют или дефектны, могут наблюдаться низкие показатели спермы или бесплодие. Один ген, называемый ген SRY, отвечает за мужские половые черты. Ген SRY запускает активацию и регулирование другого гена, обнаруженного в неполовой хромосоме, называемой Sox9. Sox9 запускает развитие неполовых гонад в яички вместо яичников.

Нарушения половой хромосомы

Нарушения в комбинации половых хромосом могут приводить к различным гендерно-специфическим условиям, которые редко бывают летальными.

Женские аномалии приводят к синдрому Тернера или Trisomy X. Синдром Тернера возникает, когда у женщин есть только одна Х-хромосома вместо двух. Симптомы включают отказ половых органов от нормального зрелости, что может привести к бесплодию, малым грудям и отсутствии менструации; невысокий рост; широкая, щитовидная грудь; и широкая шея.

Синдром Trisomy X вызван тремя Х-хромосомами вместо двух. Симптомы включают высокий рост, задержки речи, преждевременную овариальную недостаточность или отклонения яичников, а также слабый мышечный тонус — хотя многие девочки и женщины не проявляют никаких симптомов.

Синдром Клайнфелтера может поражать мужчин. Симптомы включают развитие молочной железы, аномальные пропорции, такие как большие бедра, высокий рост, бесплодие и небольшие яички.