Строение и химический состав хромосом. Строение и функции хромосом

Хромосома - это содержащая ДНК нитевидная структура в клеточном ядре, которая несет в себе гены, единицы наследственности, расположенные в линейном порядке. У человека имеется 22 пары обычных хромосом и одна пара половых хромосом. Помимо генов хромосомы также содержат регуляторные элементы и нуклеотидные последовательности. Они вмещают ДНК-связывающие белки, которые контролируют функции ДНК. Интересно, что слово «хромосома» происходит от греческого слова «chrome», означающего «цвет». Хромосомы получили такое название из-за того, что имеют особенность окрашиваться в различные тона. Структура и природа хромосом разнятся от организма к организму. Человеческие хромосомы всегда были предметом постоянного интереса исследователей, работающих в области генетики. Широкий круг факторов, которые определяются человеческими хромосомами, аномалии, за которые они ответственны, и их сложная природа всегда привлекали внимание многих ученых.

Интересные факты о человеческих хромосомах

В человеческих клетках содержится 23 пары ядерных хромосом. Хромосомы состоят из молекул ДНК, которые содержат гены. Хромосомная молекула ДНК содержит три нуклеотидных последовательности, требующихся для репликации. При окрашивании хромосом становится очевидной полосчатая структура митотических хромосом. Каждая полоска содержит многочисленные нуклеотидные пары ДНК.

Человек - это биологический вид, размножающийся половым путем и имеющий диплоидные соматические клетки, содержащие два набора хромосом. Один набор наследуется от матери, тогда как другой - от отца. Репродуктивные клети, в отличие от клеток тела, имеют один набор хромосом. Кроссинговер (перекрёст) между хромосомами приводит к созданию новых хромосом. Новые хромосомы не наследуются от кого-то одного из родителей. Это служит причиной того факта, что не у всех у нас проявляются черты, получаемые нами непосредственно от одного из наших родителей.

Аутосомным хромосомам присвоены номера от 1 до 22 в порядке убывания по мере уменьшения их размера. У каждого человека имеется два набора из 22-х хромосом, X-хромосома от матери и X- или Y-хромосома от отца.

Аномалия в содержимом хромосом клетки может вызывать у людей определенные генетические нарушения. Хромосомные аномалии у людей часто оказываются ответственными за появление генетических заболеваний у их детей. Те у кого, имеются хромосомные аномалии, зачастую являются только носителями заболевания, тогда как у их детей это заболевание проявляется.

Хромосомные аберрации (структурные изменения хромосом) бывают вызваны различными факторами, а именно делецией или дупликацией части хромосомы, инверсией, представляющей собой изменение направления хромосомы на противоположное, или транслокацией, при которой происходит отрыв части хромосомы и присоединение ее к другой хромосоме.

Лишняя копия хромосомы 21 ответственна за очень хорошо известное генетическое заболевание под названием синдром Дауна.

Трисомия хромосомы 18 приводит к синдрому Эдвардса, который может вызывать смерть в младенческом возрасте.

Делеция части пятой хромосомы приводит к генетическому нарушению известному как синдром кошачьего крика. У людей, пораженных этим заболеванием, зачастую наблюдается задержка в умственном развитии, а их плач в детском возрасте напоминает кошачий крик.

Нарушения, обусловленные аномалиями половых хромосом, включают синдром Тернера, при котором женские половые признаки присутствуют, но характеризуются недоразвитостью, а также синдром XXX у девочек и синдром XXY у мальчиков, которые вызывают дислексию у пораженных ими индивидуумов.

Впервые хромосомы были обнаружены в клетках растений. Монография Ван Бенедена, посвященная оплодотворенным яйцам аскарид привела к дальнейшим исследованиям. Позже Август Вайсман показал, что зародышевая линия отличается от сомы, и обнаружил, что клеточные ядра содержат наследственный материал. Он также предположил, что фертилизация приводит к формированию новой комбинации хромосом.

Эти открытия стали краеугольными камнями в области генетики. Исследователи уже накопили достаточно значительное количество знаний о человеческих хромосомах и генах, однако многое еще только предстоит обнаружить.

Видео

). Хроматин неоднороден, и некоторые типы такой неоднородности видны под микроскопом. Тонкая структура хроматина в интерфазном ядре, определяемая характером укладки ДНК и ее взаимодействия с белками, играет важную роль в регуляции транскрипции генов и репликации ДНК и, возможно, клеточной дифференцировки .

Последовательности нуклеотидов ДНК, которые образуют гены и служат матрицей для синтеза мРНК , распределены по всей длине хромосом (отдельные гены, разумеется, слишком малы, чтобы их можно было видеть под микроскопом). К концу XX столетия примерно для 6000 генов было установлено, на какой хромосоме и в каком участке хромосомы они находятся и каков характер их сцепления (то есть положения друг относительно друга).

Неоднородность метафазных хромосом, как уже упоминалось, можно увидеть даже при световой микроскопии. При дифференциальном окрашивании по меньшей мере в 12 хромосомах обнаружены различия в ширине некоторых полос между гомологичными хромосомами ( рис. 66.3). Такие полиморфные участки состоят из некодирующих высокоповторяющихся последовательностей ДНК.

Методы молекулярной генетики сделали возможной идентификацию огромного числа меньших по размеру и потому не выявляемых при световой микроскопии полиморфных участков ДНК. Эти участки выявляют как полиморфизм длин рестрикционных фрагментов, варьирующие по числу тандемные повторы и полиморфизм коротких тандемных повторов (моно-, ди-, три- и тетрануклеотидных). Такая изменчивость фенотипически обычно не проявляется.

Однако полиморфизм служит удобным инструментом пренатальной диагностики благодаря сцеплению определенных маркеров с мутантными генами, вызывающими заболевания (например, при миопатии Дюшенна), а также при установлении зиготности близнецов , установлении отцовства и прогнозирования отторжения трансплантата .

Трудно переоценить значение таких маркеров, особенно широко распространенных в геноме высокополиморфных коротких тандемных повторов, для картирования генома человека. В частности, они позволяют установить точный порядок и характер взаимодействия локусов, играющих важную роль в обеспечении нормального онтогенеза и клеточной дифференцировки. Это касается и тех локусов, мутации в которых приводят к наследственным заболеваниям.

Различимые под микроскопом участки на коротком плече акроцентрических аутосом ( рис. 66.1) обеспечивают синтез рРНК и образование ядрышек , поэтому их называют районами ядрышкового организатора . В метафазе они неконденсированы и не окрашиваются. Районы ядрышкового организатора примыкают к находящимся на конце короткого плеча хромосомы конденсированным участкам хроматина - спутникам. Спутники не содержат генов и являются полиморфными участками.

В небольшой части клеток удается выявить другие деконденсированные в метафазе участки, так называемые ломкие участки , где могут происходить "полные" разрывы хромосомы. Клиническое значение имеют нарушения в единственном подобном участке, расположенном на конце длинного плеча Х-хромосомы. Такие нарушения вызывают синдром ломкой Х-хромосомы .

Другие примеры специализированных районов хромосом - теломеры и центромеры .

Пока точно не установлена роль гетерохроматина , на долю которого приходится значительная часть генома человека. Гетерохроматин конденсирован в течение практически всего клеточного цикла, он неактивен и реплицируется поздно. Большинство участков конденсированы и неактивны во всех клетках (), хотя другие, например Х-хромосома, могут быть как конденсированными и неактивными, так и деконденсированными и активными ( факультативный гетерохроматин). Если из-за хромосомных аберраций гены оказываются рядом с гетерохроматином, то активность таких генов может изменяться или даже блокироваться. Поэтому проявления хромосомных аберраций , таких, как дупликации или делеции, зависят не только от затронутых локусов, но и от типа хроматина в них. Многие хромосомные аномалии, не являющиеся летальными, затрагивают неактивные или инактивируемые участки генома. Возможно, этим объясняется, что трисомии по некоторым хромосомам или моносомии по Х-хромосоме совместимы с жизнью.

Проявления хромосомной аномалии зависят также от нового расположения структурных и регуляторных генов по отношению друг к другу и к гетерохроматину.

К счастью, многие структурные особенности хромосом удается надежно обнаружить цитологическими методами. В настоящее время существует ряд методов дифференциального окрашивания хромосом ( рис. 66.1 и рис. 66.3). Расположение и ширина полос идентичны в каждой паре гомологичных хромосом, за исключением полиморфных участков, поэтому окрашивание можно использовать в клинической цитогенетике для идентификации хромосом и выявления в них структурных нарушений.

Они состоят из двух нитей - хроматид

Расположенных парал-лельно и соединенных между собой в одной точке, названной центромерой

или первичной перетяжкой

На некоторых хромосо-мах можно видеть и вторичную перетяжку.

Если вторичная перетяжка расположена близко к концу хромосомы, то дистальный участок, ограничен-ный ею, называют спутником.

Концевые участки хромосом имеют особую структуру и назы-ваются теломерами

Участок хромосомы от теломеры до центромеры называют плечом хромосомы

Каждая хромосома имеет два плеча. В зависимости от соотношения длин плеч выделяют три типа хромосом: 1) метацентрические (равноплечие); 2) субметацентрические (неравно-плечие); 3) акроцентрические, у которых одно плечо очень корот-кое и не всегда четко различимо.

Наряду с расположением центромеры, наличием вторичной перетяжки и спутника важное значение для определения отдель-ных хромосом имеет их длина. Для каждой хромосомы опреде-ленного набора длина ее остается относительно постоянной. Из-мерение хромосом необходимо для изучения их изменчивости в онтогенезе в связи с болезнями, аномалиями, нарушением вос-производительной функции.

Тонкое строение хромосом.

Химический анализ структуры хромосом показал наличие в них двух основных компонентов: дезоксирибонуклеиновой кислоты (ДНК) и белков типа гистонов и протомите (в половых клетках). Исследования тонкой субмоле-кулярной структуры хромосом привели ученых к выводу, что каждая хроматида содержит одну нить - хромонему. Каждая хромонема состоит из одной молекулы ДНК. Структурной основой хроматиды является тяж белковой природы. Хромонема уложена в хроматиде в форму, близкую к спирали. Доказательства этого предположения были получены, в частности, при изучении мель-чайших обменных частиц сестринских хроматид, которые распо-лагались поперек хромосомы.

Кариотип

При анализе наборов хромосом в клетках разных видов были выявлены различия по числу хромосом или их строению либо те и другие одновременно. Совокупность количественных и струк-турных особенностей диплоидного набора хромосом вида полу-чила название кариотипа

По определению С. Г. Навашина, кариотип

Это структура - своеобразная формула вида. В кариотипе заложена генетическая информация особи, изменения кото-рой влекут за собой изменения признаков и функций организма данной особи или ее потомства. Поэтому так важно знать осо-бенности нормального строения хромосом, чтобы при возмож-ности суметь выявить изменения в кариотипе.

ДНК является материальным носителем свойств наследственности и изменчивости и заключает в себе биологическую информацию - программу развития клетки, организма, записанную с помощью особого кода.

Гистоны представлены пятью фракциями: HI, Н2А, Н2В, НЗ, Н4. Являясь положительно заряженными основными белками, они достаточно прочно соединяются с молекулами ДНК, чем препятствуют считыванию заключенной в ней биологической информации. эти белки выполняют структурную функцию, обеспечивая пространственную организацию ДНК в хромосомах

РНК хромосом представлена отчасти продуктами транскрипции, еще не покинувшими место синтеза. Некоторым фракциям свойственна регуляторная функция.

Регуляторная роль компонентов хромосом заключается в «запрещении» или «разрешении» списывания информации с молекулы ДНК.

Первый уровень нуклеосомная нить. ДНК+белки-гистоны Н2А,Н2В,Н3,Н4. Степень укорочения в 6-7раз. Второй: хроматиновая фибрилла. Нуклеосомная нить+белок-гистонН1. Укорочение в 42раза. Третий:интерфазная хромосома. Хроматиновая фибрилла с помощью негистоновых белков укладывается в петли. Укорочение в 1600раз. Четвертый. Метафазная хромосома. Суперконденсация хроматина. Укорочение в 8000раз.

Строение и функции метафазных хромосом человека

Метафаза занимает значительную часть периода митоза, и отличается относительно стабильным состоянием.

Все это время хромосомы удерживаются в экваториальной плоскости веретена за счёт сбалансированных сил натяжения микротрубочек.

В метафазе, также как и в течение других фаз митоза, продолжается активное обновление микротрубочек веретена путём интенсивной сборки и деполимеризации молекул тубулина. К окончанию метафазы наблюдается чёткое обособление сестринских хроматид, соединение между которыми сохраняется лишь в центромерных участках. Плечи хроматид располагаются параллельно друг другу, и становится отчетливо заметной разделяющая их щель.

Не нашли то, что искали? Воспользуйтесь поиском:

Спирали ДНК в ядре «упакованы» в хромосомы. Человеческая клетка содержит 46 хромосом, объединенных в 23 пары. Большинство генов, составляющих пару в гомологичных хромосомах, почти или полностью идентичны, и часто приходится слышать, что все гены в геноме человека имеют свою пару, хотя это не совсем правильно.

Наряду с ДНК в состав хромосом входит много белка, большая часть которого представлена мелкими положительно заряженными молекулами гистонов. Они образуют множество небольших, похожих на катушки структур, которые, располагаясь одна за другой, обвиваются короткими сегментами ДНК.

Эти структуры играют важную роль в регуляции активности ДНК, поскольку обеспечивают ее плотную «упаковку» и делают таким образом невозможным ее использование в качестве матрицы для синтеза новой ДНК. Существуют также регуляторные белки, которые, напротив, деконденсируют небольшие участки гистоновой упаковки ДНК, создавая таким образом возможность синтеза РНК.

Видео: Митоз. Митоз клетки. Фазы митоза

Среди основных компонентов хромосом есть и негистоновые белки, которые, с одной стороны, являются структурными белками хромосом, а с другой - активаторами, ингибиторами или ферментами в составе регуляторных генетических систем.

Репликация хромосом в полном объеме начинается через несколько минут после завершения репликации ДНК. В течение этого времени вновь синтезированные цепи ДНК объединяются с белками. Две вновь образованные хромосомы до самого конца митоза остаются прикрепленными друг к другу в участке, близком к их центру и называемом центромерой. Такие разделившиеся, но не разошедшиеся хромосомы называют хроматидами.

Процесс деления материнской клетки на две дочерние называют митозом. Вслед за репликацией хромосом с образованием двух хроматид в течение 1-2 ч автоматически начинается митоз.

Одно из самых первых изменений в цитоплазме , связанных с митозом, происходит на поздних стадиях интерфазы и затрагивает центриоли.Центриоли так же, как ДНК и хромосомы, удваиваются во время интерфазы- обычно это происходит незадолго до репликации ДНК. Центриоль длиной около 0,4 мкм и диаметром около 0,15 мкм состоит из девяти параллельных триплетов- трубочек, собранных в виде цилиндра. Центриоли каждой пары лежат под прямым углом друг к другу. Пару центриолеи вместе с прилегающим к ней веществом называют центросомой.

Фазы митоза клетки

Незадолго до начала митоза обе пары центриолей начинают перемещаться в цитоплазме, отдаляясь друг от друга. Это движение обусловлено полимеризацией белка микротрубочек, которые начинают расти от одной пары центриолеи к другой и за счет этого расталкивать их к противоположным полюсам клетки. В то же время от каждой пары центриолеи начинают расти другие микротрубочки, которые увеличиваются в длину и отходят от них радиально в виде лучей, образуя на каждом полюсе клетки так называемую астросферу. Отдельные ее лучи проникают через ядерную оболочку, способствуя таким образом разделению каждой пары хроматид во время митоза. Группу микротрубочек между двумя парами центриолеи называют веретеном деления, а весь набор микротрубочек вместе с центриолями - митотическим аппаратом.

Профаза . По мере образования веретена в ядре начинается конденсация хромосом (в интерфазе они состоят из двух слабосвязанных цепей), которые благодаря этому становятся хорошо различимы.

Прометафаза . Идущие от астросферы микротрубочки разрушают ядерную оболочку. В то же время другие микротрубочки, отходящие от астросферы, прикрепляются к центромерам, которые пока еще соединяют все хроматиды попарно, и начинают тянуть обе хроматиды каждой пары к разным полюсам клетки.

Видео: Фазы мейоза

Метафаза . Во время метафазы астросферы отдаляются друг от друга еще больше.

Считается, что их движение обусловлено отходящими от них микротрубочками. Эти микротрубочки сплетаются вместе и образуют веретено, которое и отталкивает центриоли друг от друга. Полагают также, что между микротрубочками веретена располагаются молекулы мелких сократительных белков, или «моторные молекулы» (возможно, они аналогичны актину), которые обеспечивают взаимное скольжение микротрубочек в противоположных направлениях, как это происходит при мышечном сокращении. Микротрубочки, прикрепившиеся к центромерам, подтягивают хроматиды к центру клетки и выстраивают их в виде метафазной пластинки по экватору веретена.

Анафаза . Во время этой фазы две хроматиды каждой пары отрываются друг от друга в области центромеры. Все 46 пар хроматид разделяются и образуют два самостоятельных набора из 46 дочерних хромосом. Каждый набор хромосом движется к противоположным астросферам, а полюсы делящейся клетки в это время расходятся все дальше.

Телофаза . В этой фазе два набора дочерних хромосом полностью расходятся, митотический аппарат постепенно разрушается, вокруг каждого набора хромосом за счет мембраны эндоплазматического ретикулума формируется новая ядерная оболочка. Вскоре после этого между двумя новыми ядрами появляется перетяжка, делящая клетку на две дочерних. Деление обусловлено образованием кольца из микрофиламентов актина и, возможно, миозина (два сократительных мышечных белка) в области перетяжки между дочерними клетками, которое отшнуровывает их друг от друга.

Учебное видео: митоз клетки и его стадии


Внимание, только СЕГОДНЯ!

Химический состав хромосом

хроматин,

Белки составляют значительную часть вещества хромосом.

На их долю приходится около 65% массы этих структур. Все хромосомные белки разделяются на две группы: гистоны и негистоновые белки.

Гистоны

Число фракций негистоновых

хромосом.

Морфология хромосом

центромеры дочерние хромосомы,

Рис. 3.52. Формы хромосом:

I - телоцентрическая, II - акроцентрическая, III- субметацентрическая, IV- метацентрическая;

1 - центромера, 2 - спутник, 3 - короткое плечо, 4 - длинное плечо, 5 - хроматиды

хромосомными мутациями или аберрациями. О них – в следующей лекции.

Похожая информация:

Поиск на сайте:

Химический состав хромосом

Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков, которые образуют нуклеопротеиновый комплекс-хроматин, получивший свое название за способность окрашиваться основными красителями.

Белки составляют значительную часть вещества хромосом. На их долю приходится около 65% массы этих структур. Все хромосомные белки разделяются на две группы: гистоны и негистоновые белки.

Гистоны представлены пятью фракциями: HI, Н2А, Н2В, НЗ, Н4. Являясь положительно заряженными основными белками, они достаточно прочно соединяются с молекулами ДНК, чем препятствуют считыванию заключенной в ней биологической информации. В этом состоит их регуляторная роль. Кроме того, эти белки выполняют структурную функцию, обеспечивая пространственную организацию ДНК в хромосомах.

Число фракций негистоновых белков превышает 100. Среди них ферменты синтеза и процессинга РНК, репликации и репарации ДНК. Кислые белки хромосом выполняют также структурную и регуляторную роль. Помимо ДНК и белков в составе хромосом обнаруживаются также РНК, липиды, полисахариды, ионы металлов.

Регуляторная роль компонентов хромосом заключается в «запрещении» или «разрешении» списывания информации с молекулы ДНК. Другие компоненты встречаются в незначительном количестве.

Структурная организация хроматина

Хроматин в зависимости от периода и фазы клеточного цикла меняет свою организацию. В интерфазе при световой микроскопии он выявляется в виде глыбок, рассеянных в нуклеоплазме ядра. При переходе клетки к митозу, особенно в метафазе, хроматин приобретает вид хорошо различимых отдельных интенсивно окрашенных телец - хромосом.

Наиболее распространенной является точка зрения, согласно которой хроматин (хромосома) представляет собой спирализованную нить.

Морфология хромосом

В первой половине митоза они состоят из двух хроматид, соединенных между собой в области первичной перетяжки (центромеры ) особым образом организованного участка хромосомы, общего для обеих сестринских хроматид. Во второй половине митоза происходит отделение хроматид друг от друга. Из них образуются однонитчатые дочерние хромосомы, распределяющиеся между дочерними клетками.

В зависимости от места положения центромеры и длины плеч, расположенных по обе стороны от нее, различают несколько форм хромосом: равноплечие, или метацентрические (с центромерой посередине), неравноплечие, или субметацентрические (с центромерой, сдвинутой к одному из концов), палочковидные, или акроцентрические (с центромерой, расположенной практически на конце хромосомы), и точковые - очень небольшие, форму которых трудно определить (рис.).

Таким образом, каждая хромосома индивидуальна не только по заключенному в ней набору генов, но и по морфологии и характеру дифференциального окрашивания.

3.52. Формы хромосом:

I - телоцентрическая, II - акроцентрическая, III- субметацентрическая, IV- метацентрическая;

1 - центромера, 2 - спутник, 3 - короткое плечо, 4 - длинное плечо, 5 - хроматиды

Рис. 3.53. Расположение локусов в хромосомах человека

при их дифференциальном окрашивании:

р - короткое плечо, q - длинное плечо; 1-22 - порядковый номер хромосомы; XY - половые хромосомы

На хромосомном уровне организации, который появляется в процессе эволюции у эукариотических клеток, генетический аппарат должен удовлетворять всем требованиям, предъявляемым к субстрату наследственности и изменчивости: обладать способностью к самовоспроизведению, поддержанию постоянства своей организации и приобретению изменений, которые могут передаваться новому поколению клеток.

Несмотря на эволюционно отработанный механизм, позволяющий сохранять постоянной физико-химическую и морфологическую организацию хромосом в ряду клеточных поколений, под влиянием различных воздействий эта организация может изменяться. В основе изменения структуры хромосомы, как правило, лежит первоначальное нарушение ее целостности - разрывы, которые сопровождаются различными перестройками, называемыми хромосомными мутациями или аберрациями. О них – в следующей лекции.

Похожая информация:

Поиск на сайте:

Понятие «хромосома» было введено в науку Валдеймером в 1888г. Хромосома – это составная часть клеточного ядра, с помощью которой осуществляется регуляция синтеза белков в клетке, т.е. передача наследственной информации. Хромосомы представлены комплексами нуклеиновых кислот и белка. Функционально хромосома представляет собой нить ДНК с огромной функциональной поверхностью. Количество хромосом постоянно для каждого конкретного вида.

Каждая хромосома образована двумя морфологически идентичными взаимоперевитыми нитями одинакового диаметра – хроматидами. Они тесно соединены центромерой – специальной структурой, управляющей передвижениями хромосом при делении клетки.

В зависимости от положения хромосомы тело хромосомы делится на 2 плеча. Это в свою очередь и определяет 3 основных типа хромосом.

1 тип – Акроцентрическая хромосома.

Ее центромера расположена ближе к концу хромосомы и одно плечо при этом длинное, а другое очень короткое.

2 тип – Субметацентрическая хромосома .

Ее центромера находится ближе к середине хромосомы и делит ее на неравные плечи: короткое и длинное.

3 тип – Метацентрическая хромосома.

Ее центромера находится в самом центре тела хромосомы и делит на равные плечи.

Длина хромосом варьирует в разных клетках от 0,2 до 50 мкм, диаметр – от 0,2 до 2 мкм. Наиболее крупные хромосомы у растений имеют представители семейства лилейных, у животных – некоторые амфибии. Длина большинства хромосом человека составляет 2-6 мкм.

Химический состав хромосом определяется в основном ДНК, а также белками – 5 видами гистоновых и 2 видами негистоновых, а также РНК. Особенности этих химических веществ обуславливают важные функции хромосом:

1.редупликация и передача генетического материала из поколения в поколение;

2.синтез белка и контроль всех биохимических процессов, составляющих основу специфичности развития и дифференциации клеточных систем организма. Кроме того, в составе хромосом обнаружены: сложный остаточный белок, липиды, кальций, магний, железо.

Структурной основой хромосом служит комплекс ДНК – гистон. В хромосоме нить ДНК посредством гистонов упакована в регулярно повторяющиеся структуры с диаметром около 10 нм, называемые нуклеосомами. Поверхность молекул гистонов заряжена положительно, спираль ДНК – отрицательно. Нуклеосомы упакованы в нитевидные структуры, получившие названия фибрилл. Из них построена хроматида.

Главным субстратом, в котором записана генетическая информация организма, являются эухроматиновые районы хромосом. В противоположность ему существует инертный гетерохроматин. В отличие от эухроматина, содержащего уникальные гены, дисбаланс по которым отрицательно отражается на фенотипе организма, изменение в количестве гетерохроматина значительно меньше влияет или совсем не влияет на развитие признаков организма.

Для того, чтобы легче было разобраться в сложном комплексе хромосом, составляющих кариотип, их можно расположить в виде идиограммы, составленной С.Г.Новашиным. В идиограмме хромосомы (кроме половых) располагаются в порядке убывания величины.

Однако идентификация только по величине трудна, поскольку ряд хромосом имеет сходные размеры. Величина хромосом измеряется их абсолютной или относительной длиной по отношению к суммарной длине всех хромосом гаплоидного набора. Самые крупные хромосомы человека в 4-5 раз длиннее самых мелких хромосом. В 1960 г. была предложена классификация хромосом человека в зависимости от морфологических характеристик: величины, формы, положения центромеры – в порядке уменьшения общей длины. Согласно этой классификации 22 пары хромосом объеденены в 7 групп:

1гр.1-3 пара хромосом – крупные, метацентрические.

2 гр.4-5 пара хромосом – крупные, субметацентрические.

3 гр.6-12 пара хромосом – средних размеров, субметацентрические.

4 гр.13-15 пара хромосм- средних размеров, акроцентрические.

5 гр.16-18 пара хромосом – короткие, из них 16- метацентрическая, 17 – субметацентрическая, 18 – акроцентрическая.

6 гр.19-20 пара хромосом – короткие, метацентрические.

7 гр.21-22 пара хромосом – очень короткие, акроентрические.

Дата публикования: 2014-12-08; Прочитано: 6366 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

В составе капсида .

Энциклопедичный YouTube

    1 / 5

    ✪ Хромосомы, хроматиды, хроматин и т.п.

    ✪ Гены, ДНК и хромосомы

    ✪ Самые важные термины генетики. Локусы и гены. Гомологичные хромосомы. Сцепление и кроссинговер.

    ✪ Хромосомные болезни. Примеры и причины. Видеоурок по биологии 10 класс

    ✪ Клеточные технологии. ДНК. Хромосома. Геном. Программа "В первом приближении"

    Субтитры

    Перед погружением в механизм деления клеток, я думаю, будет полезно поговорить о лексике, связанной с ДНК. Есть много слов, и некоторые из них сходны по звучанию друг с другом. Они могут сбивать с толку. Для начала я бы хотел поговорить о том, как ДНК генерирует больше ДНК, создаёт свои копии, или о том, как она вообще делает белки. Мы уже говорили об этом в ролике о ДНК. Давайте я нарисую небольшой участок ДНК. У меня есть A, Г, T, пусть у меня Есть два Т и потом два Ц. Такой небольшой участок. Он продолжается вот так. Конечно, это двойная спираль. Каждой букве соответствует своя. Я нарисую их этим цветом. Итак, A соответствует T, Г соответствует Ц, (точнее Г образует водородные связи с Ц), T - с A, T - с A, Ц - с Г, Ц - с Г. Вся эта спираль тянется, допустим, в этом направлении. Итак, есть пара различных процессов, которые эта ДНК должна осуществить. Один из них связан с клетками вашего тела - необходимо произвести больше клеток вашей кожи. Ваша ДНК должна скопировать себя. Этот процесс называется репликацией. Вы реплицируете ДНК. Я покажу вам репликацию. Как эта ДНК может скопировать себя? Это одна из самых замечательных особенностей структуры ДНК. Репликация. Я делаю общее упрощение, но идея заключается в том, что две цепи ДНК разделяются, и это происходит не само по себе. Этому способствует масса белков и ферментов, но в деталях я буду рассказывать о микробиологии в другом ролике. Итак, эти цепи отделяются друг от друга. Я перенесу цепь сюда. Они отделяются друг от друга. Я возьму другую цепь. Эта слишком большая. Эта цепь будет выглядеть как-то так. Они отделяются друг от друга. Что же может произойти после этого? Я удалю лишние фрагменты здесь и здесь. Итак, вот наша двойная спираль. Они все были связаны. Это пары оснований. Теперь они отделяются друг от друга. Что может делать каждая из них после разделения? Они теперь могут стать матрицей друг для друга. Смотрите… Если эта цепь находится сама по себе, сейчас, неожиданно может прийти тиминовое основание и присоединится здесь, и эти нуклеотиды начнут выстраиваться в линию. Тимин и цитозин, и потом аденин, аденин, гуанин, гуанин. И так продолжаться. И тогда, в этой другой части, на зелёной цепи, которая была до этого прикреплена к этой голубой, будет происходить то же самое. Будет аденин, гуанин, тимин, тимин, цитозин, цитозин. Что произошло только что? Разделением и привлечением комплементарных оснований, мы создали копию этой молекулы. Мы займёмся микробиологией этого в будущем, это только для общего представления о том, как ДНК копирует себя. Особенно, когда мы рассматриваем митоз и мейоз, я могу сказать: «Это стадия, где происходит репликация». Теперь, другой процесс, о котором вы ещё много услышите. Я говорил о нём в ролике о ДНК. Это транскрипция. В ролике о ДНК я не уделял много внимания тому, как ДНК удваивает сама себя, но одна из великолепных особенностей устройства двойной цепи - это лёгкая возможность самоудвоения. Вы просто разделяете 2 полоски, 2 спирали, а потом они становятся матрицей для другой цепи, и тогда появляется копия. Теперь транскрипция. Это то, что должно произойти с ДНК для того, чтобы образовались белки, но транскрипция - это промежуточная стадия. Это стадия, когда вы переходите от ДНК к мРНК. Тогда эта мРНК покидает ядро клетки и направляется к рибосомам. Я буду говорить об этом через несколько секунд. Итак, мы можем сделать то же самое. Эти цепи опять в ходе транскрипции разделяются. Одна отделяется сюда, а другая отделяется... а другая будет отделятся вот сюда. Прекрасно. Может быть имеет смысл использовать только одну половину цепи - я удалю одну. Вот таким образом. Мы собираемся транскрибировать зелёную часть. Вот она. Всё это я удалю. Не тот цвет. Итак, я удаляю всё это. Что произойдёт, если вместо нуклеотидов дезоксирибонуклеиновой кислоты, которые образуют пары с этой цепью ДНК, у вас есть рибонуклеиновая кислота, или РНК, образующая пары. Изображу РНК пурпурным цветом. РНК будет образовывать пары с ДНК. Тимин, находящийся в ДНК, будет образовывать пару с аденином. Гуанин, теперь, когда мы говорим о РНК, вместо тимина у нас будет урацил, урацил, цитозин, цитозин. И это будет продолжаться. Это мРНК. Информационная РНК. Теперь она отделяется. Эта мРНК отделяется и покидает ядро. Она покидает ядро, и тогда происходит трансляция. Трансляция. Запишем этот термин. Трансляция. Это идёт от мРНК... В ролике о ДНК у меня была маленькая тРНК. Транспортная РНК была как бы грузовиком, перевозящим аминокислоты к мРНК. Всё это происходит в части клетки, называемой рибосомой. Трансляция происходит от мРНК к белку. Мы видели, как это происходит. Итак, от мРНК к белку. У вас есть эта цепь - я сделаю копию. Скопирую всю цепь сразу. Эта цепь отделяется, покидает ядро, и тогда у вас есть эти маленькие грузовики тРНК, которые, собственно, и, так сказать, подъезжают. Итак, допустим, у меня есть тРНК. Давайте посмотрим, аденин, аденин, гуанин и гуанин. Это РНК. Это кодон. Кодон имеет 3 пары оснований и прикреплённую к нему аминокислоту. У вас есть некоторые другие части тРНК. Скажем, урацил, цитозин, аденин. И прикреплённая к нему другая аминокислота. Тогда аминокислоты соединяются и образуют длинную цепь аминокислот, которая является белком. Белки образуют эти странные сложные формы. Чтобы убедиться, что вы поняли. Мы начнём с ДНК. Если мы производим копии ДНК - это репликация. Вы реплицируете ДНК. Итак, если мы производим копии ДНК - это репликация. Если вы начинаете с ДНК и создаёте мРНК с матрицы ДНК, то это транскрипция. Запишем. "Транскрипция" . То есть вы транскрибируете информацию с одной формы на другую - транскрипция. Теперь, когда мРНК покидает ядро клетки… Я нарисую клетку, чтобы обратить на это внимание. Мы займёмся структурой клетки в будущем. Если это целая клетка, ядро - это центр. Это место, где находятся все ДНК, все репликации и транскрипции происходят здесь. Затем мРНК покидает ядро, и тогда в рибосомах, которые мы более подробно обсудим в будущем, происходит трансляция и формируется белок. Итак, от мРНК к белку - это трансляция. Вы транслируете с генетического кода, в так называемый белковый код. Итак, это и есть трансляция. Это именно те слова, которые обычно используются для описания этих процессов. Убедитесь, что вы правильно их используете, называя различные процессы. Теперь другая часть терминологии ДНК. Когда я впервые встретился с ней, я решил, что она чрезвычайно сбивает с толку. Это слово «хромосома». Запишу слова здесь - вы сами можете оценить, как они сбивают с толку: хромосома, хроматин и хроматида. Хроматида. Итак, хромосома, мы уже говорили о ней. У вас может быть цепь ДНК. Это двойная спираль. Эта цепь, если я увеличу её, - на самом деле две разных цепи. Они имеют соединённые пары оснований. Я только что нарисовал пары оснований, соединённые вместе. Я хочу, чтобы было ясно: я нарисовал эту небольшую зелёную линию здесь. Это двойная спираль. Она оборачивается вокруг белков, которые называются гистонами. Гистоны. Пусть она оборачивается вот так и как-то так, а потом как-нибудь так. Здесь у вас есть вещества, называемые гистонами, которые являются белками. Нарисуем их вот таким образом. Вот так. Это структура, то есть ДНК в комбинации с белками, которые её структурируют, заставляя оборачиваться вокруг дальше и дальше. В конечном счёте, в зависимости от стадии жизни клетки, будут образовываться различные структуры. И когда вы говорите о нуклеиновой кислоте, которая является ДНК, и объединяете её с белками, то вы говорите о хроматине. Значит, хроматин - это ДНК плюс структурные белки, которые придают ДНК форму. Структурные белки. Идея хроматина была впервые использована из-за того, что люди видели, когда смотрели на клетку… Помните? Каждый раз я рисовал клеточное ядро определённым образом. Скажем, так. Это ядро клетки. Я рисовал очень хорошо различимые структуры. Это одна, это другая. Может быть, она короче, и у неё есть гомологичная хромосома. Я нарисовал хромосомы, так? И каждая из этих хромосом, как я уже показывал в прошлом видео, - по существу - длинные структуры ДНК, длинные цепи ДНК, плотно обёрнутые друг вокруг друга. Я рисовал это как-то так. Если мы увеличим, то увидим одну цепь, и она действительно обёрнута вокруг себя подобно этому. Это её гомологичная хромосома. Вспомните, в ролике, посвящённом изменчивости, я говорил о гомологичной хромосоме, которая кодирует те же гены, но другую их версию. Синий - от папы, а красный - от мамы, но они по существу кодируют те же гены. Итак, это одна цепь, которую я получил от папы с ДНК этой структуры, мы называем её хромосомой. Итак, хромосома. Я хочу, чтобы это было ясно, ДНК принимает эту форму только на определённых жизненных стадиях, когда она воспроизводит сама себя, т.е. реплицируется. Точнее не так… Когда клетка делится. Перед тем как клетка становится способной к делению, ДНК принимает эту хорошо определённую форму. Большую часть жизни клетки, когда ДНК делает свою работу, когда она создаёт белки, то есть белки транскрибируются и транслируются с ДНК, она не сворачивается таким образом. Если бы она была свёрнута, для репликационной и транскрипционной системы было бы затруднительно проникнуть к ДНК, произвести белки и делать что-то ещё. Обычно ДНК… Давайте я ещё раз нарисую ядро. Чаще всего вы даже не можете увидеть её в обычный световой микроскоп. Она настолько тонкая, что вся спираль ДНК полностью распределена в ядре. Я рисую это здесь, другая может быть здесь. А потом у вас есть более короткая цепь, типа этой. Вы даже не можете её увидеть. Она не находится в этой, хорошо определённой структуре. Обычно это выглядит таким образом. Пусть будет ещё такая короткая цепь. Вы можете увидеть только подобный беспорядок, состоящий из путаницы комбинаций ДНК и белков. Это то, что люди в общем-то и называют хроматином. Это нужно записать. "Хроматин" Таким образом, слова могут быть очень неоднозначны и очень запутанны, но общее использование, когда вы говорите о хорошо определённой одной цепи ДНК, вот таким образом хорошо определённой структуры, то это хромосома. Понятие "хроматин" может относиться либо к структуре типа хромосомы, комбинации ДНК и белков, структурирующих ее, либо к беспорядку множества хромосом, в которых есть ДНК. То есть из множества хромосом и белков, перемешанных вместе. Я хочу, чтобы это было понятно. Теперь следующее слово. Что такое хроматида? На всякий случай, если я ещё не сделал этого… Я не помню, помечал ли я это. Эти белки, которые обеспечивают структуру хроматина или составляют хроматин, а также обеспечивают структуру называются "гистонами". Есть различные типы, которые обеспечивают структуру на различных уровнях, мы ещё рассмотрим их детально. Итак, что такое хроматида? Когда ДНК реплицируется… Скажем, это была моя ДНК, она находится в нормальном состоянии. Одна версия - от папы, одна версия - от мамы. Теперь она реплицируется. Версия от папы сначала выглядит так. Это большая цепь ДНК. Она создаёт другую версию себя, идентичную, если система работает правильно, и эта идентичная часть выглядит так. Они изначально прикреплены друг к другу. Они прикреплены друг к другу в месте, называемом центромерой. Теперь, несмотря на то что у меня здесь 2 цепи, скрепленные вместе. Две одинаковые цепи. Одна цепь здесь, одна тут… Хотя давайте я изображу иначе. В принципе это можно изобразить множеством разных способов. Это одна цепь здесь, и вот другая цепь тут. То есть у нас имеются 2 копии. Они кодируют абсолютно одинаковую ДНК. Так вот. Они идентичны, поэтому я всё ещё называю это хромосомой. Запишем это тоже. Всё это вместе называется хромосомой, но теперь каждая отдельная копия называется хроматидой. Итак, это одна хроматида и это другая. Иногда их называют сестринскими хроматидами. Также их можно назвать хроматидами-близнецами, потому что у них одна и та же генетическая информация. Итак, эта хромосома имеет 2 хроматиды. Теперь перед репликацией или перед удвоением ДНК вы можете сказать, что эта хромосома вот здесь имеет одну хроматиду. Вы можете называть это хроматидой, но это не обязательно. Люди начинают говорить о хроматидах тогда, когда две из них присутствуют в хромосоме. Мы узнаем, что в митозе и мейозе эти 2 хроматиды разделяются. Когда они разделяются, тут же цепь ДНК, которую вы однажды называли хроматидой, теперь вы будете называть отдельной хромосомой. Итак, это одна из них, и вот другая, которая могла отделиться в этом направлении. Обведу эту зелёным. Итак, эта может отойти в эту сторону, а эта, которую я обвёл оранжевым, например, в эту … Теперь, когда они отделены и больше не связаны центромерой, то, что мы изначально называли одной хромосомой с двумя хроматидами, теперь вы называете двумя отдельными хромосомами. Или можно сказать, что теперь у вас есть две отдельные хромосомы, каждая из которых состоит из одной хроматиды. Я надеюсь, что это немного проясняет значение терминов, связанных с ДНК. Я всегда находил их довольно запутанными, но они будут полезным инструментом, когда мы начнём митоз и мейоз и я буду говорить о том, что хромосома становится хроматидой. Вы будете спрашивать, как одна хромосома стала двумя хромосомами, и как хроматида стала хромосомой. Всё это вращается вокруг лексики. Я бы выбрал другую, вместо того чтобы называть это хромосомой и каждую из этих отдельными хромосомами, но так решили называть за нас. Возможно, вам интересно узнать, откуда это слово - «хромо». Может быть, вы знаете старую плёнку «Кодак», которая называлась «хромо цвет». В принципе «хромо» означает «цвет». Я думаю, оно происходит от греческого слова «цвет». Когда люди первый раз стали рассматривать ядро клетки, они использовали краситель, и то, что мы называем хромосомами, окрашивалось красителем. И мы могли видеть это в световой микроскоп. Часть «сома» происходит от слова «сома», обозначающего «тело», то есть мы получаем окрашенное тело. Так появилось слово «хромосома». Хроматин также окрашивается… Надеюсь, это немного проясняет понятия «хроматида», «хромосома», «хроматин», и теперь мы подготовлены к изучению митоза и мейоза.

История открытия хромосом

Первые описания хромосом появились в статьях и книгах разных авторов в 70-х годах XIX века, и приоритет открытия хромосом отдают разным людям. Среди них такие имена, как И. Д. Чистяков (1873), А. Шнейдер (1873), Э. Страсбургер (1875), О. Бючли (1876) и другие . Чаще всего годом открытия хромосом называют 1882 год, а их первооткрывателем - немецкого анатома В. Флеминга , который в своей фундаментальной книге «Zellsubstanz, Kern und Zelltheilung» собрал и упорядочил сведения о них, дополнив результатами собственных исследований. Термин «хромосома» был предложен немецким гистологом Г. Вальдейером в 1888 году. «Хромосома» в буквальном переводе означает «окрашенное тело», поскольку оснóвные красители хорошо связываются хромосомами .

После переоткрытия в 1900 году законов Менделя потребовалось всего один-два года для того, чтобы стало ясно, что хромосомы при мейозе и оплодотворении ведут себя именно так, как это ожидалось от «частиц наследственности». В 1902 году Т. Бовери и в 1902-1903 годах У. Сеттон (Walter Sutton ) независимо друг от друга выдвинули гипотезу о генетической роли хромосом .

В 1933 году за открытие роли хромосом в наследственности Т. Морган получил Нобелевскую премию по физиологии и медицине .

Морфология метафазных хромосом

На стадии метафазы митоза хромосомы состоят из двух продольных копий, которые называются сестринскими хроматидами и которые образуются при репликации . У метафазных хромосом сестринские хроматиды соединены в районе первичной перетяжки , называемой центромерой . Центромера отвечает за расхождение сестринских хроматид в дочерние клетки при делении. На центромере происходит сборка кинетохора - сложной белковой структуры, определяющей прикрепление хромосомы к микротрубочкам веретена деления - движителям хромосомы в митозе . Центромера делит хромосомы на две части, называемые плечами . У большинства видов короткое плечо хромосомы обозначают буквой p , длинное плечо - буквой q . Длина хромосомы и положение центромеры являются основными морфологическими признаками метафазных хромосом.

В зависимости от расположения центромеры различают три типа строения хромосом:

Эту классификацию хромосом на основе соотношения длин плеч предложил в 1912 году российский ботаник и цитолог С. Г. Навашин . Помимо вышеуказанных трёх типов С. Г. Навашин выделял ещё и телоцентрические хромосомы, то есть хромосомы только с одним плечом. Однако по современным представлениям истинно телоцентрических хромосом не бывает. Второе плечо, пусть даже очень короткое и невидимое в обычный микроскоп, всегда присутствует .

Дополнительным морфологическим признаком некоторых хромосом является так называемая вторичная перетяжка , которая внешне отличается от первичной отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают различной длины и могут располагаться в различных точках по длине хромосомы. Во вторичных перетяжках находятся, как правило, ядрышковые организаторы , содержащие многократные повторы генов, кодирующих рибосомные РНК . У человека вторичные перетяжки, содержащие рибосомные гены, находятся в коротких плечах акроцентрических хромосом, они отделяют от основного тела хромосомы небольшие хромосомные сегменты, называемые спутниками . Хромосомы, обладающие спутником, принято называть SAT-хромосомами (лат. SAT (Sine Acid Thymonucleinico) - без ДНК).

Дифференциальная окраска метафазных хромосом

При монохромном окрашивании хромосом (ацето-кармином, ацето-орсеином, окрашиванием по Фёльгену или Романовскому-Гимзе) можно идентифицировать число и размеры хромосом; их форму, определяемую прежде всего положением центромер, наличием вторичных перетяжек, спутников. В подавляющем числе случаев для идентификации индивидуальных хромосом в хромосомном наборе этих признаков недостаточно. Кроме того, монохромно окрашенные хромосомы часто очень похожи у представителей разных видов. Дифференциальное окрашивание хромосом, различные методики которого были разработаны в начале 70-х годов XX века, снабдило цитогенетиков мощнейшим инструментом для идентификации как индивидуальных хромосом в целом, так и их частей, облегчив тем самым процедуру анализа генома .

Методы дифференциального окрашивания делятся на две основные группы:

Уровни компактизации хромосомной ДНК

Основу хромосомы составляет линейная макромолекула ДНК значительной длины. В молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований . Суммарная длина ДНК из одной клетки человека составляет величину порядка двух метров. При этом типичное ядро клетки человека, которое можно увидеть только при помощи микроскопа, занимает объём около 110 мкм³, а митотическая хромосома человека в среднем не превышает 5-6 мкм. Подобная компактизация генетического материала возможна благодаря наличию у эукариот высокоорганизованной системы укладки молекул ДНК как в интерфазном ядре, так и в митотической хромосоме. Надо отметить, что у эукариот в пролиферирующих клетках осуществляется постоянное закономерное изменение степени компактизации хромосом. Перед митозом хромосомная ДНК компактизуется в 10 5 раз по сравнению с линейной длиной ДНК, что необходимо для успешной сегрегации хромосом в дочерние клетки, в то время как в интерфазном ядре для успешного протекания процессов транскрипции и репликации хромосоме необходимо декомпактизоваться . При этом ДНК в ядре никогда не бывает полностью вытянутой и всегда в той или иной степени упакована. Так, расчётное уменьшение размера между хромосомой в интерфазе и хромосомой в митозе составляет всего примерно 2 раза у дрожжей и 4-50 раз у человека .

Одним из самых последних уровней упаковки в митотическую хромосому некоторые исследователи считают уровень так называемой хромонемы , толщина которой составляет около 0,1-0,3 мкм . В результате дальнейшей компактизации диаметр хроматиды достигает ко времени метафазы 700 нм. Значительная толщина хромосомы (диаметр 1400 нм) на стадии метафазы позволяет, наконец, увидеть её в световой микроскоп. Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), поскольку две хроматиды, возникшие в результате репликации , соединены между собой в районе центромеры (подробнее о судьбе хромосом при клеточном делении см. статьи митоз и мейоз).

Хромосомные аномалии

Анеуплоидия

При анеуплоидии происходит изменение числа хромосом в кариотипе, при котором общее число хромосом не кратно гаплоидному хромосомному набору n . В случае утраты одной хромосомы из пары гомологичных хромосом мутантов называют моносомиками , в случае одной дополнительной хромосомы мутантов с тремя гомологичными хромосомами называют трисомиками , в случае утраты одной пары гомологов - нуллисомиками . Анеуплоидия по аутосомным хромосомам всегда вызывает значительные нарушения развития, являясь основной причиной спонтанных абортов у человека . Одной из самых известных анеуплоидий у человека является трисомия по хромосоме 21, которая приводит к развитию синдрома Дауна . Анеуплоидия характерна для опухолевых клеток, особенно для клеток сóлидных опухолей .

Полиплоидия

Изменение числа хромосом, кратное гаплоидному набору хромосом (n ), называется полиплоидией. Полиплоидия широко и неравномерно распространена в природе. Известны полиплоидные эукариотические микроорганизмы - грибы и водоросли , часто встречаются полиплоиды среди цветковых, но не среди голосемянных растений. Полиплоидия клеток всего организма у многоклеточных животных редка, хотя у них часто встречается эндополиплоидия некоторых дифференцированных тканей, например, печени у млекопитающих, а также тканей кишечника, слюнных желёз, мальпигиевых сосудов ряда насекомых .

Хромосомные перестройки

Хромосомные перестройки (хромосомные аберрации) - это мутации, нарушающие структуру хромосом. Они могут возникнуть в соматических и зародышевых клетках спонтанно или в результате внешних воздействий (ионизирующее излучение , химические мутагены , вирусная инфекция и др.). В результате хромосомной перестройки может быть утрачен или, наоборот, удвоен фрагмент хромосомы (делеция и дупликация , соответственно); участок хромосомы может быть перенесён на другую хромосому (транслокация) или он может изменить свою ориентацию в составе хромосомы на 180° (инверсия). Существуют и другие хромосомные перестройки.

Необычные типы хромосом

Микрохромосомы

B-хромосомы

B-хромосомы - это добавочные хромосомы, которые имеются в кариотипе только у отдельных особей в популяции. Они часто встречаются у растений , описаны у грибов , насекомых и животных . Некоторые В-хромосомы содержат гены, часто это гены рРНК , однако не ясно, насколько эти гены функциональны. Наличие В-хромосом может влиять на биологические характеристики организмов, особенно у растений, где их наличие ассоциируется с пониженной жизнеспособностью. Предполагается, что В-хромосомы постепенно утрачиваются в соматических клетках в результате нерегулярности их наследования .

Голоцентрические хромосомы

Голоцентрические хромосомы не имеют первичной перетяжки, они имеют так называемый диффузный кинетохор, поэтому во время митоза микротрубочки веретена деления прикрепляются по всей длине хромосомы. Во время расхождения хроматид к полюсам деления у голоцентрических хромосом они идут к полюсам параллельно друг другу, в то время как у моноцентрической хромосомы кинетохор опережает остальные части хромосомы, что приводит к характерной V-образной форме расходящихся хроматид на стадии анафазы. При фрагментации хромосом, например, в результате воздействия ионизирующего излучения, фрагменты голоцентрических хромосом расходятся к полюсам упорядоченно, а не содержащие центромеры фрагменты моноцентрических хромосом распределяются между дочерними клетками случайным образом и могут быть утрачены .

Голоцентрические хромосомы встречаются у протист , растений и животных. Голоцентрическими хромосомами обладает нематода C. elegans .

Гигантские формы хромосом

Политенные хромосомы

Политенные хромосомы - это гигантские скопления объединённых хроматид, возникающие в некоторых типах специализированных клеток. Впервые описаны Е. Бальбиани (Edouard-Gerard Balbiani ) в 1881 году в клетках слюнных желёз мотыля (Chironomus ), их исследование было продолжено уже в 30-х годах XX века Костовым, Т. Пэйнтером, Э. Хайцем и Г. Бауером (Hans Bauer ). Политенные хромосомы обнаружены также в клетках слюнных желёз, кишечника , трахей , жирового тела и мальпигиевых сосудов личинок двукрылых .

Хромосомы типа ламповых щёток

Хромосомы типа ламповых щёток - это гигантская форма хромосом, которая возникает в мейотических женских клетках на стадии диплотены профазы I у некоторых животных, в частности, у некоторых земноводных и птиц . Эти хромосомы являются крайне транскрипционно активными и наблюдаются в растущих ооцитах тогда, когда процессы синтеза РНК , приводящие к образованию желтка , наиболее интенсивны. В настоящее время известно 45 видов животных, в развивающихся ооцитах которых можно наблюдать такие хромосомы. Хромосомы типа ламповых щёток не образуются в ооцитах млекопитающих .

Впервые хромосомы типа ламповых щёток были описаны В. Флеммингом в 1882 году. Название «хромосомы типа ламповых щёток» было предложено немецким эмбриологом И. Рюккертом (J. Rϋckert ) в 1892 году.

По длине хромосомы типа ламповых щёток превышают политенные хромосомы. Например, общая длина хромосомного набора в ооцитах некоторых хвостатых амфибий достигает 5900 мкм.

Бактериальные хромосомы

Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида , но гистонов у них не обнаружено.

Хромосомы человека

Нормальный кариотип человека представлен 46 хромосомами. Это 22 пары аутосом и одна пара половых хромосом (XY в мужском кариотипе и XX - в женском). В нижеприведённой таблице показано число генов и оснований в хромосомах человека.

Хромосома Всего оснований Количество генов Количество белок-кодирующих генов
249250621 3511 2076
243199373 2368 1329
198022430 1926 1077
191154276 1444 767
180915260 1633 896
171115067 2057 1051
159138663 1882 979
146364022 1315 702
141213431 1534 823
135534747 1391 774
135006516 2168 1914
133851895 1714 1068
115169878 720 331
107349540 1532 862
102531392 1249 615
90354753 1326 883
81195210 1773 1209
78077248 557 289
59128983 2066 1492
63025520 891 561
48129895 450 246
51304566 855 507
X-хромосома 155270560 1672 837
Y-хромосома 59373566 429 76
Всего 3 079 843 747 36463

См. также

Примечания

  1. Тарантул В. З. Толковый биотехнологический словарь. - М. : Языки славянских культур, 2009. - 936 с. - 400 экз. - ISBN 978-5-9551-0342-6 .

Лекция №3

Тема: Организация потока генетической информации

План лекции

1. Структура и функции клеточного ядра.

2. Хромосомы: структура и классификация.

3. Клеточный и митотический циклы.

4. Митоз, мейоз: цитологическая и цитогенетическая характеристика, значение.

Структура и функции клеточного ядра

Основная генетическая информация заключена в ядре клеток.

Клеточное ядро (лат. – nucleus ; греч. – karyon ) было описано в 1831г. Робертом Броуном. Форма ядра зависит от формы и функций клетки. Размеры ядер изменяются в зависимости от метаболической активности клеток.

Оболочка интерфазного ядра (кариолемма ) состоит из наружной и внутренней элементарных мембран. Между ними находится перинуклеарное пространство . В мембранах имеются отверстия – поры. Между краями ядерной поры располагаются белковые молекулы, которые образуют поровые комплексы. Отверстие пор закрыто тонкой пленкой. При активных процессах обмена веществ в клетке большинство пор открыто. Через них идет поток веществ – из цитоплазмы в ядро и обратно. Количество пор у одного ядра

Рис. Схема строения клеточного ядра

1 и 2 – наружная и внутренняя мембраны ядерной оболочки, 3

– ядерная пора, 4 – ядрышко, 5 – хроматин, 6 – ядерный сок

достигает 3-4 тысяч. Наружная ядерная мембрана соединяется с каналами эндоплазматической сети. На ней обычно располагаются рибосомы . Белки внутренней поверхности ядерной оболочки формируют ядерную пластинку . Она поддерживает постоянной форму ядра, к ней прикрепляются хромосомы.

Ядерный сок – кариолимфа , коллоидный раствор в состоянии геля, который содержит белки, липиды, углеводы, РНК, нуклеотиды, ферменты. Ядрышко – непостоянный компонент ядра. Оно исчезает в начале клеточного деления и восстанавливается в конце его. Химический состав ядрышек: белок (~90%), РНК (~6%), липиды, ферменты. Ядрышки образуются в области вторичных перетяжек спутничных хромосом. Функция ядрышек: сборка субъединиц рибосом.

Хроматин ядра – это интерфазные хромосомы. Они содержат ДНК, белки-гистоны и РНК в соотношении 1:1,3:0,2. ДНК в соединении с белком образует дезоксирибонуклеопротеин (ДНП). При митотическом делении ядра ДНП спирализуется и образует хромосомы.

Функции клеточного ядра:

1) хранит наследственную информацию клетки;

2) участвует в делении (размножении) клетки;

3) регулирует процессы обмена веществ в клетке.

Хромосомы: структура и классификация

Хромосомы (греч. – chromo – цвет, soma – тело) – это спирализованный хроматин. Их длина 0,2 – 5,0 мкм, диаметр 0,2 – 2 мкм.

Рис. Типы хромосом

Метафазная хромосома состоит из двух хроматид , которые соединяются центромерой (первичной перетяжкой ). Она делит хромосому на два плеча . Отдельные хромосомы имеют вторичные перетяжки . Участок, который они отделяют, называется спутником , а такие хромосомы – спутничными. Концевые участки хромосом называются теломеры . В каждую хроматиду входит одна непрерывная молекула ДНК в соединении с белками-гистонами. Интенсивно окрашивающиеся участки хромосом – это участки сильной спирализации (гетерохроматин ). Более светлые участки – участки слабой спирализации (эухроматин ).

Типы хромосом выделяют по расположению центромеры (рис.).

1. Метацентрические хромосомы – центромера расположена посередине, и плечи имеют одинаковую длину. Участок плеча около центромеры называется проксимальным, противоположный – дистальным.

2. Субметацентрические хромосомы – центромера смещена от центра и плечи имеют разную длину.

3. Акроцентрические хромосомы – центромера сильно смещена от центра и одно плечо очень короткое, второе плечо очень длинное.

В клетках слюнных желез насекомых (мух дрозофил) встречаются гигантские, политенные хромосомы (многонитчатые хромосомы).

Для хромосом всех организмов существует 4 правила:

1. Правило постоянства числа хромосом . В норме организмы определенных видов имеют постоянное, характерное для вида число хромосом. Например: у человека 46, у собаки 78, у мухи дрозофилы 8.

2. Парность хромосом . В диплоидном наборе в норме каждая хромосома имеет парную хромосому – одинаковую по форме и по величине.

3. Индивидуальность хромосом . Хромосомы разных пар отличаются по форме, строению и величине.

4. Непрерывность хромосом . При удвоении генетического материала хромосома образуется от хромосомы.

Набор хромосом соматической клетки, характерный для организма данного вида, называется кариотипом .

Классификацию хромосом проводят по разным признакам.

1. Хромосомы, одинаковые в клетках мужского и женского организмов,называются аутосомами . У человека в кариотипе 22 пары аутосом. Хромосомы, различные в клетках мужского и женского организмов, называются гетерохромосомами, или половыми хромосомами . У мужчины это Х и Y хромосомы, у женщины – Х и Х.

2. Расположение хромосом по убывающей величине называется идиограммой . Это систематизированный кариотип. Хромосомы располагаются парами (гомологичные хромосомы). Первая пара – самые большие, 22-я пара – маленькие и 23-я пара – половые хромосомы.

3. В 1960г. была предложена Денверская классификация хромосом. Она строится на основании их формы, размеров, положения центромеры, наличия вторичных перетяжек и спутников. Важным показателем в этой классификации является центромерный индекс (ЦИ). Это отношение длины короткого плеча хромосомы ко всей ее длине, выраженное в процентах. Все хромосомы разделены на 7 групп. Группы обозначаются латинскими буквами от А до G.

Группа А включает 1 – 3 пары хромосом. Это большие метацентрические и субметацентрические хромосомы. Их ЦИ 38-49%.

Группа В . 4-я и 5-я пары – большие метацентрические хромосомы. ЦИ 24-30%.

Группа С . Пары хромосом 6 – 12: средней величины, субметацентрические. ЦИ 27-35%. В эту группу входит и Х-хромосома.

Группа D . 13 – 15-я пары хромосом. Хромосомы акроцентрические. ЦИ около 15%.

Группа Е . Пары хромосом 16 – 18. Сравнительно короткие, метацентрические или субметацентрические. ЦИ 26-40%.

Группа F . 19 – 20-я пары. Короткие, субметацентрические хромосомы. ЦИ 36-46%.

Группа G . 21-22-я пары. Маленькие, акроцентрические хромосомы. ЦИ 13-33%. К этой группе относится и Y-хромосома.

4. Парижская классификация хромосом человека создана в 1971 году. С помощью этой классификации можно определять локализацию генов в определенной паре хромосом. Используя специальные методы окраски, в каждой хромосоме выявляют характерный порядок чередования темных и светлых полос (сегментов). Сегменты обозначают по названию методов, которые их выявляют: Q – сегменты – после окрашивания акрихин-ипритом; G – сегменты – окрашивание красителем Гимза; R – сегменты – окрашивание после тепловой денатурации и другие. Короткое плечо хромосомы обозначают буквой p, длинное – буквой q. Каждое плечо хромосомы делят на районы и обозначают цифрами от центромеры к теломеру. Полосы внутри районов нумеруют по порядку от центромеры. Например, расположение гена эстеразы D – 13p14 – четвертая полоса первого района короткого плеча 13-й хромосомы.

Функция хромосом: хранение, воспроизведение и передача генетической информации при размножении клеток и организмов.


Похожая информация.