Подкорковые ядра. Базальные ядра (ганглии) головного мозга



Ганглии или базальные ядра головного мозга, располагаются сразу под корой полушарий и оказывают влияние на двигательные функции организма. Нарушение работы отражается на латеральной системе и как следствие, на мышечном тонусе и анатомическом положении мускулатуры.

Что такое базальные ганглии мозга

Базальные подкорковые ядра головного мозга - это массивные анатомические структуры, расположенные в белом веществе полушарий.

К ганглиям относятся четыре различных образования:

  1. Хвостатое ядро.
  2. Ограда.
  3. Чечевицеобразное ядро.
  4. Миндалевидное тело.
Все базальные структуры имеют оболочки или прослойки, состоящие из белого вещества, отделяющие их друг от друга.

Хвостатое и чечевицеобразное ядро вместе составляют отдельное анатомическое образование, называемое полосатое тело, по латыни corpus striatum .

Основным функциональным назначением базальных ядер головного мозга является торможение или усиление передачи импульсных сигналов от таламуса к участкам коры, отвечающей за моторику и оказывающим влияние на двигательные способности организма.

Где расположены базальные ядра

Ганглии – это часть подкорковых нейронных узлов полушарий головного мозга, расположенных в белом веществе передней доли. Анатомическое расположение базальных ганглий приходится на границу между лобными долями и стволом мозга. Такое расположение облегчает регуляцию двигательных и вегетативных возможностей организма. Функцией базальных ядер является участие в интегративных процессах центральной нервной системы.

Первым симптомом, на который стоит обратить внимание, является мелкая дрожь и непроизвольные движения в руках. Интенсивность проявлений нарастает во время усталости.


За что отвечают базальные ганглии

Базальная часть мозга отвечает за несколько важных функций, напрямую влияющих на самочувствие пациента и регуляцию ЦНС. Три больших подкорковых ядра образуют экстрапирамидальную систему, главной задачей которой является контроль над двигательными функциями и моторикой тела.

Базальные ядра конечного мозга, составляющие, стриопаллидарную систему (входит в состав экстрапирамидальной) отвечают непосредственно за сокращение мышц. По сути, отдел обеспечивает связь базальных ядер с корой головного мозга, регулирует интенсивность и скорость движения конечностей, а также их силу.

Область базальных ядер располагается в белом веществе лобной доли. Умеренная дисфункция ганглий мозга приводит к незначительным отклонениям двигательной функции, особенно заметной при движении: ходьбе и беге пациента.

Функциональное значение базальных ядер также связано с работой гипоталамуса и . Зачастую любые нарушения в структуре и функциональности ганглий сопровождаются дисфункцией питуитарной железы и нижнего отдела полушарий большого мозга.

Виды нарушений и дисфункции ганглий

Поражение базальных ганглий головного мозга отражается на общем самочувствии пациента. Принято считать, что патологические изменения являются катализаторами возникновения следующих болезней:

Признаки дисфункции базальных структур мозга

Патологические нарушения в базальной поверхности головного мозга моментально отражаются на двигательных функциях и моторике пациента. Врач может обратить внимание на следующие симптомы:

Если участки пониженной плотности базальных отделов мозга соединены с другими долями полушарий и нарушения распространяются в соседние отделы, наблюдаются проявления, связанные с памятью, мыслительными процессами.

Для точной диагностики отклонений специалист назначит дополнительные инструментальные диагностические процедуры:

  1. Тесты.
  2. УЗИ головного мозга.
  3. Компьютерная и магнитно-резонансная томография.
  4. Клинические анализы.
Прогноз заболевания зависит от степени поражения и причин, вызвавших заболевание. При неблагоприятном течении патологических изменений назначается пожизненный курс приема препаратов. Оценить тяжесть поражения и назначить адекватную терапию, может только квалифицированный врач – невролог.

Подкорковыми или базальными ядрами называют скопления серого вещества в толще нижней и боковых стенок больших полушарий. К ним относятся полосатое тело, бледный шар и ограда .

Полосатое тело состоит из хвостатого ядра и скорлупы . К нему идут афферентные нервные волокна от двигательных и ассоциативных зон коры, таламуса, черной субстанции среднего мозга. Связь с черной субстанцией осуществляется с помощью дофаминергических синапсов. Выделяющийся в них дофамин тормозит нейроны полосатого тела. Кроме того, сигналы от полосатого тела поступают от мозжечка, красных и вестибулярных ядер. От него аксоны нейронов идут к бледному шару. В свою очередь, от бледного шара эфферентные пути идут к таламусу и двигательным ядрам среднего мозга, т.е. красному ядру и черной субстанции. Полосатое тело оказывает на нейроны бледного шара преимущественно тормозящее влияние. Основная функция подкорковых ядер – регуляция движения. Кора посредством подкорковых ядер организует и регулирует дополнительные, вспомогательные движения, необходимые для правильного выполнения основного двигательного акта или облегчающие его. Это, например, определенное положение туловища и ног при выполнении работы руками. При нарушении функции подкорковых ядер вспомогательные движения становятся либо чрезмерными, либо полностью отсутствуют. В частности, при болезни Паркинсона или дрожательном параличе , полностью исчезает мимика, и лицо становится маскообразным, ходьба осуществляется мелкими шажками. Больные с рудом начинают и оканчивают движения, выражен тремор конечностей. Тонус мышц повышается. Возникновение болезни Паркинсона обусловлено нарушением проведения нервных импульсов от черной субстанции к полосатому телу через дофаминергические синапсы, обеспечивающие эту передачу (L-DCFA).

С поражением полосатого тела и гиперактивностью бледного шара связаны заболевания с избыточными движениями, т.е. гиперкинезы. Это подергивания мышц лица, шеи, туловища, конечностей. А также двигательная гиперактивность в виде бесцельного перемещения. Например, она наблюдается при хорее .

Кроме этого, полосатое тело принимает участие в организации условных рефлексов, процессах памяти, регуляции пищевого поведения.

Общий принцип организации движения.

Таким образом, за счет центров спинного, продолговатого, среднего мозга, мозжечка, подкорковых ядер организуются бессознательные движения. Сознательные осуществляются тремя путями:

    С помощью пирамидных клеток коры и нисходящих пирамидных трактов. Значение этого механизма небольшое.

    Через мозжечок.

    Посредством базальных ядер.

Для организации движений особое значение имеют афферентные импульсы спинальной двигательной системы. Восприятие напряжения мышц осуществляется мышечными веретенами и сухожильными рецепторами. Во всех мышцах имеются короткие клетки веретенообразной формы. Несколько таких веретен заключены в соединительно-тканную капсулу. Поэтому их называют интрафузальными . Существует два типа интрафузальных волокон: волокна с ядерной цепочкой и волокна с ядерной сумкой . Последние толще и длиннее первых. Эти волокна выполняют различные функции. Через капсулу к мышечным веретенам проходит толстое афферентное нервное волокно, относящее к группе 1А. После входа в капсулу оно разветвляется, и каждая веточка образует спираль вокруг центра ядерной сумки интрафузальных волокон. Поэтому такое окончание называется аннулоспиральным . На периферии веретена, т.е. его дистальный отделах находятся вторичные афферентные окончания. Кроме того, к веретенам подходят эфферентные волокна от мотонейронов спинного мозга. При их возбуждении происходит укорочение веретен. Это необходимо для регуляции чувствительности веретен к растяжению. Вторичные афферентные окончания также являются рецепторами растяжения, но их чувствительность меньше чем аннулоспиральных. В основном их функция заключается в контроле степени напряжения мышц при постоянном тонусе экстрафузальных мышечных клеток.

В сухожилиях находятся сухожильные органы Гольджи . Они образованы сухожильными нитями, отходящими от нескольких экстрафузальных, т.е. рабочих мышечных клеток. На этих нитях располагаются разветвления миелиновых афферентных нервов группы 1Б.

Мышечных веретен относительно больше в мышцах отвечающих за тонкие движения. Рецепторов Гольджи меньше чем веретен.

Мышечные веретена воспринимают в основном изменение длины мышцы. Рецепторы сухожилий – ее напряжение. Импульсы от этих рецепторов по афферентным нервам поступают в двигательные центры спинного мозга, а по восходящим путям – к мозжечку и коре. В результате анализа пропреорецепторных сигналов в мозжечке происходит непроизвольная координация сокращений отдельных мышц и мышечных групп. Она осуществляется при посредстве центров среднего и продолговатого мозга. Обработка сигналов корой приводит к возникновению мышечного чувства и организации произвольных движений через пирамидные тракты, мозжечок и подкорковые ядра.

Лимбическая система .

К лимбической системе относятся такие образования древней и старой коры, как обонятельные луковицы, гиппокамп, поясная извилина, зубчатая фасция, парагиппокампальная извилина, а также подкорковое миндалевидное ядро и переднее таламическое ядро. Лимбической эта система структур мозга называется, потому что они образуют кольцо (лимб) на границе ствола мозга и новой коры. Структуры лимбической системы имеют многочисленные двусторонние связи между собой, а также с лобными, височными долями коры и гипоталамусом.

Благодаря этим связям она регулирует и выполняет следующие функции:

    Регуляция вегетативных функций и поддержание гомеостаза . Лимбическую систему называют висцеральным мозгом , так как она осуществляет тонкую регуляцию функций органов кровообращения, дыхания, пищеварения, обмен веществ и т.д. Особое значение лимбической системы состоит в том, что она реагирует на небольшие отклонения параметров гомеостаза. Она влияет на эти функции через вегетативные центры гипоталамуса и гипофиз.

    Формирование эмоций . При операциях на мозге было установлено, что раздражение миндалевидного ядра вызывает появление у пациентов беспричинных эмоций страха, гнева, ярости. При удалении миндалевидного ядра у животных, полностью исчезает агрессивное поведение (психохирургия). Раздражение некоторых зон поясной извилины ведет к возникновению немотивированной радости или грусти. А так как лимбическая система участвует и в регуляции функций висцеральных систем, то все вегетативные реакции, возникающие при эмоциях (изменение работы сердца, кровяного давления, потоотделения), также осуществляются ею.

    Формирование мотиваций. Лимбическая система участвует в возникновении и организации направленности мотиваций. Миндалевидное ядро регулирует пищевую мотивацию. Некоторые его области тормозят активность центра насыщения и стимулируют центр голода гипоталамуса. Другие действуют противоположным образом. За счет этих центров пищевой мотивации миндалевидного ядра формируется поведение на вкусную и невкусную пищу. В нем же есть отделы, регулирующие половую мотивацию. При их раздражении возникает гиперсексуальность и выраженная половая мотивация.

    Участие в механизмах памяти. В механизмах запоминания особая роль принадлежит гиппокампу. Во-первых, он классифицирует и кодирует всю информацию, которая должна быть заложена в долговременной памяти. Во-вторых, обеспечивает извлечение и воспроизведение нужной информации в конкретный момент. Предполагают, что способность к обучению определяется врожденной активностью соответствующих нейронов гиппокампа.

В связи с тем, что лимбической системе принадлежит важная роль в формировании мотиваций и эмоций, при нарушениях ее функций возникают изменения психоэмоциональной сферы. В частности, состояние тревожности и двигательного возбуждения. В этом случае назначают транквилизаторы , тормозящие образование и выделение в межнейронных синапсах лимбической системы серотонина. При депрессии применяются антидепрессанты , усиливающие образование и накопление норадреналина. Предполагают, что шизофрения, проявляющаяся патологией мышления, бредом, галлюцинациями, обусловлена изменениями нормальных связей между корой и лимбической системой. Это объясняется усилением образования дофина в пресинаптических окончаниях дофаминергических нейронов. Аминазин и другие нейролептики блокируют синтез дофамина и вызывают ремиссию. Амфетамины (фенамин) усиливают образование дофамина и могут вызвать возникновение психозов.

Базальные (подкорковые) ядра (nuclei basales) головного мозга располагаются под белым веществом внутри переднего мозга, преимущественно в лобных долях. К базальным ядрам относят хвостатое ядро (nucleus caudatus), скорлупу (putamen), ограду (claustrum), бледный шар (globus pallidus).

Хвостатое ядро. Скорлупа

Хвостатое ядро (nucleus caudatus) и скорлупа (putamen) являются эволюционно более поздними, чем бледный шар, образованиями и функционально оказывают на него тормозящее влияние.

Хвостатое ядро и скорлупа имеют сходное гистологическое стро­ение. Их нейроны относятся ко II типу клеток Гольджи, т. е. имеют короткие дендриты, тонкий аксон; их размер до 20 мк. Этих нейронов в 20 раз больше, чем нейронов Гольджи I типа, имеющих развет­вленную сеть дендритов и размер около 50 мк.

Функции любых образований головного мозга определяются прежде всего их связями, которых у базальных ядер достаточно много. Эти связи имеют четкую направленность и функциональную очерченность.

Хвостатое ядро и скорлупа получают нисходящие связи преиму­щественно от экстрапирамидной коры через подмозолистый пучок. Другие поля коры большого мозга также посылают большое коли­чество аксонов к хвостатому ядру и скорлупе.

Основная часть аксонов хвостатого ядра и скорлупы идет к бледному шару, отсюда - к таламусу и только от него - к сенсорным полям. Следовательно, между этими образованиями име­ется замкнутый круг связей. Хвостатое ядро и скорлупа имеют также функциональные связи со структурами, лежащими вне этого круга: с черной субстанцией, красным ядром, люисовым телом, ядрами преддверия, мозжечком, γ -клетками спинного мозга.

Обилие и характер связей хвостатого ядра и скорлупы свиде­тельствуют об их участии в интегративных процессах, организации и регуляции движений, регуляции работы вегетативных органов.

Раздражение поля 8 коры большого мозга вызывает возбуждение нейронов хвостатого ядра, а поля 6 - возбуждение нейронов хво­статого ядра и скорлупы. Одиночное раздражение сенсомоторной области коры большого мозга может вызывать возбуждение или торможение активности нейронов хвостатого ядра. Эти реакции возникают через 10-20 мс, что свидетельствует о прямых и опос­редованных связях коры большого мозга с хвостатым ядром.

Медиальные ядра таламуса имеют прямые связи с хвостатым ядром, свидетельством чего служит реакция его нейронов, насту­пающая через 2-4 мс после раздражения таламуса.

Реакцию нейронов хвостатого ядра вызывают раздражения кожи, световые, звуковые стимулы.

Во взаимодействиях хвостатого ядра и бледного шара прева­лируют тормозные влияния. Если раздражать хвостатое ядро, то большая часть нейронов бледного шара тормозится, а меньшая возбуждается. В случае повреждения хвостатого ядра у животного появляется двигательная гиперактивность.


Взаимодействие черного вещества и хвостатого ядра основано на прямых и обратных связях между ними. Установлено, что сти­муляция хвостатого ядра усиливает активность нейронов черного вещества. Стимуляция черного вещества приводит к увеличению, а разрушение - к уменьшению количества дофамина в хвостатом ядре. Установлено, что дофамин синтезируется в клетках черного вещества, а затем со скоростью 0,8 мм/ч транспортируется к си­напсам нейронов хвостатого ядра. В хвостатом ядре в 1 г нервной ткани накапливается до 10 мкг дофамина, что в 6 раз больше, чем в других отделах переднего мозга, бледном шаре, в 19 раз больше, чем в мозжечке. Благодаря дофамину проявляется растормажива­ющий механизм взаимодействия хвостатого ядра и бледного шара.

При недостатке дофамина в хвостатом ядре (например, при дисфункции черного вещества) бледный шар растормаживается, ак­тивизирует спинно-стволовые системы, что приводит к двигательным нарушениям в виде ригидности мышц.

Кортико-стриарные связи топически локализованы. Так, пе­редние области мозга связаны с головкой хвостатого ядра. Пато­логия, возникающая в одной из взаимосвязанных областей кора - хвостатое ядро, функционально компенсируется сохранившейся структурой.

Хвостатое ядро и бледный шар принимают участие в таких интегративных процессах, как условнорефлекторная деятельность, двигательная активность. Это выявляется при стимуляции хвостатого ядра, скорлупы и бледного шара, деструкции и при регистрации электрической активности.

Прямое раздражение некоторых зон хвостатого ядра вызывает поворот головы в сторону, противоположную раздражаемому полу­шарию, животное начинает двигаться по кругу, т. е. возникает так называемая циркуляторная реакция.

Раздражение других областей хвостатого ядра и скорлупы вы­зывает прекращение всех видов активности человека или животного: ориентировочной, эмоциональной, двигательной, пищевой. При этом в коре большого мозга наблюдается медленноволновая активность.

У человека стимуляция хвостатого ядра во время нейрохирур­гической операции нарушает речевой контакт с больным: если боль­ной что-то говорил, то он замолкает, а после прекращения раздра­жения не помнит, что к нему обращались. В случаях травм головного мозга с раздражением головки хвостатого ядра у больных отмечается ретро-, антеро- или ретроантероградная амнезия.

У таких животных, как обезьяны, раздражения хвостатого ядра на разных этапах реализации условного рефлекса приводят к тор­можению выполнения данного рефлекса. Например, если у обезьяны через вживленные электроды раздражать хвостатое ядро перед по­дачей условного сигнала, то обезьяна не реагирует на сигнал, как будто не слышала его; раздражение ядра после того, как обезьяна на сигнал направляется к кормушке или уже начинает брать пищу из кормушки, приводит к остановке животного, после прекращения раздражения обезьяна, не завершив условной реакции, возвращается на место, т. е. она «забывает», что был раздражающий сигнал (ре­троградная амнезия).

Раздражение хвостатого ядра может полностью предотвратить восприятие болевых, зрительных, слуховых и других видов стимуляции. Раздражение вентральной области хвостатого ядра снижает, а дорсальной - повышает слюноотделение.

При стимуляции хвостатого ядра удлиняются латентные периоды рефлексов, нарушается переделка условных рефлексов. Выработка условных рефлексов на фоне стимуляции хвостатого ядра становится невозможной. Видимо, это объясняется тем, что стимуляция хво­статого ядра вызывает торможение активности коры большого мозга.

Ряд подкорковых структур также получает тормозное влияние хвостатого ядра. Так, стимуляция хвостатых ядер вызывала вере­тенообразную активность в зрительном бугре, бледном шаре, субталамическом теле, черном веществе и др.

Таким образом, специфичным для раздражения хвостатого ядра является преимущественно торможение активности коры боль­шого мозга, подкорковых образований, торможение безусловного и условнорефлекторного поведения.

В то же время при раздражении хвостатого ядра могут появляться некоторые виды изолированных движений. Видимо, хвостатое ядро имеет наряду с тормозящими и возбуждающие структуры.

Выключение хвостатого ядра сопровождается развитием гиперкинезов типа непроизвольных мимических реакций, тремора, ате­тоза, торсионного спазма, хореи (подергивания конечностей; туло­вища, как при некоординированном танце), двигательной гиперак­тивности в форме бесцельного перемещения с места на место.

В случае повреждения хвостатого ядра наблюдаются сущест­венные расстройства высшей нервной деятельности, затруднение ориентации в пространстве, нарушение памяти, замедление роста организма. После двустороннего повреждения хвостатого ядра ус­ловные рефлексы исчезают на длительный срок, выработка новых рефлексов затрудняется, общее поведение отличается застойностью, инертностью, трудностью переключений. У обезьян после односто­роннего повреждения хвостатого ядра условная реакция восстанав­ливалась через 30-50 дней, латентные периоды рефлексов удли­нялись, появлялись межсигнальные реакции. Двустороннее повреж­дение приводило к полному торможению условных рефлексов. Видимо, двустороннее повреждение истощает симметричные ком­пенсаторные механизмы.

При воздействиях на хвостатое ядро, помимо нарушений высшей нервной деятельности, отмечаются расстройства движения. Многие авторы отмечают, что у разных животных при двустороннем по­вреждении полосатого тела появляется безудержное стремление дви­гаться вперед, при одностороннем - возникают манежные движения.

Несмотря на большое функциональное сходство хвостатого ядра и скорлупы, имеется ряд функций, специфичных для последней.

Эволюционно скорлупа появляется раньше хвостатого ядра (ее зачатки есть уже у рыб).

Для скорлупы характерно участие в организации пищевого по­ведения: пищепоиска, пищенаправленности, пищезахвата и пищевладения; ряд трофических нарушений кожи, внутренних органов (например, гепатолентикулярная дегенерация) возникает при нарушениях функции скорлупы. Раздражения скорлупы приводят к из­менениям дыхания, слюноотделения.

Как упоминалось ранее, раздражение хвостатого ядра тормозит условный рефлекс на всех этапах его реализации. В то же время раздражение хвостатого ядра препятствует угашению условного ре­флекса, т. е. развитию торможения; животное перестает восприни­мать новую обстановку. Учитывая, что стимуляция хвостатого ядра приводит к торможению условного рефлекса, следовало бы ожидать, что разрушение хвостатого ядра вызовет облегчение условнорефлекторной деятельности. Но оказалось, что разрушение хвостатого ядра также приводит к торможению условнорефлекторной деятель­ности. Видимо, функция хвостатого ядра не является просто тор­мозной, а заключается в корреляции и интеграции процессов опе­ративной памяти. Это подтверждается также тем, что на нейронах хвостатого ядра конвергирует информация различных сенсорных систем, так как большая часть этих нейронов полисенсорна.

Бледный шар

Бледный шар (globus pallidus s. pallidum) имеет преимущественно крупные нейроны Гольджи I типа. Связи бледного шара с таламусом, скорлупой, хвостатым ядром, средним мозгом, гипоталамусом, соматосенсорной системой и др. свидетельствуют об его участии в организации простых и сложных форм поведения.

Раздражение бледного шара с помощью вживленных электродов вызывает сокращение мышц конечностей, активацию или торможе­ние γ-мотонейронов спинного мозга. У больных с гиперкинезами раздражение разных отделов бледного шара (в зависимости от места и частоты раздражения) увеличивало или снижало гиперкинез.

Стимуляция бледного шара в отличие от стимуляции хвостатого ядра не вызывает торможения, а провоцирует ориентировочную реакцию, движения конечностей, пищевое поведение (обнюхивание, жевание, глотание и т.д.).

Повреждение бледного шара вызывает у людей гипомимию, маскообразность лица, тремор головы, конечностей (причем этот тре­мор исчезает в покое, во сне и усиливается при движениях), мо­нотонность речи. При повреждении бледного шара наблюдается миоклония - быстрые подергивания мышц отдельных групп или отдельных мышц рук, спины, лица.

В первые часы после повреждения бледного шара в остром опыте на животных резко снижалась двигательная активность, движения ха­рактеризовались дискоординацией, отмечалось наличие незавершен­ных движений, при сидении - поникшая поза. Начав движение, жи­вотное долго не могло остановиться. У человека с дисфункцией блед­ного шара затруднено начало движений, исчезают вспомогательные и реактивные движения при вставании, нарушаются содружественные движения рук при ходьбе, появляется симптом пропульсии: длитель­ная подготовка к движению, затем быстрое движение и остановка. Та­кие циклы у больных повторяются многократно.

Ограда (claustrum) содержит полиморфные нейроны разных ти­пов. Она образует связи преимущественно с корой большого мозга.

Глубокая локализация и малые размеры ограды представляют определенные трудности для ее физиологического исследования. Это ядро имеет форму узкой полоски серого вещества, расположенного под корой большого мозга в глубине белого вещества.

Стимуляция ограды вызывает ориентировочную реакцию, пово­рот головы в сторону раздражения, жевательные, глотательные, иногда рвотные движения. Раздражение ограды тормозит условный рефлекс на свет, мало сказывается на условном рефлексе на звук. Стимуляция ограды во время еды тормозит процесс поедания пищи.

Известно, что толщина ограды левого полушария у человека несколько больше, чем правого; при повреждении ограды правого полушария наблюдаются расстройства речи.

Таким образом, базальные ядра головного мозга являются интегративными центрами организации моторики, эмоций, высшей нервной деятельности, причем каждая из этих функций может быть усилена или заторможена активацией отдельных образований ба-зальных ядер.

Базальные (подкорковые) ядра располагаются под белым веществом внутри переднего мозга, преимущественно в лобных долях. У млекопитающих к базальным ганглиям относятся сильно вытянутое в длину и изогнутое хвостатое ядро и заложенное в толще белого вещества чечевицеобразное ядро. Двумя белыми пластинками оно подразделяется на три части: наиболее крупную, лежащую латерально скорлупу и бледный шар, состоящий из внутреннего и внешнего отделов. Они формируют так называемую стриопаллидарную систему, которая по филогенетическим и функциональным критериям разделяется на древний палеостриатум и неостриатум. Палеостриатум представлен бледным шаром, а неостриатум, состоит из хвостатого ядра и скорлупы, которые объединяются под названием полосатого тела или стриатума. А объединяют их под общим названием «полосатое тело», в связи с тем, что скопление нервных клеток, образующих серое вещество, чередуются с прослойками белого вещества. (Ноздрачева А.Д., 1991)

Базальные ганглии головного мозга человека включает в себя также ограду. Это ядро имеет форму узкой полоски серого вещества. (Покровский, 1997) Медиально она граничит с наружной капсулой, латерально - с капсулой экстрема.

Нейронная организация

Хвостатое ядро и скорлупа имеют сходную нейронную организацию. Они содержат главным образом мелкие нейроны с короткими дендритами и тонкими аксонами, их размер до 20 мк. Кроме мелких, имеется небольшое число (5% от общего состава) относительно крупных нейронов, имеющих разветвленную сеть дендритов и размер около 50 мк.

Рис.2.Базальные ядра конечного мозга (полусхематично)

А - вид сверху B -- вид изнутри C -- вид снаружи 1. хвостатое ядро 2. головка 3. тело 4. хвост 5. таламус 6. подушка таламуса 7. миндалевидное ядро 8. скорлупа 9. наружный бледный шар 10. внутренний бледный шар 11. чечевицеобразное ядро 12. ограда 13. передняя спайка мозга 14. перемычки

В противоположность полосатому телу, бледный шар имеет преимущественно крупные нейроны. Кроме того, имеется значительное количество мелких нейронов, выполняющих, по-видимому, функции промежуточных элементов. (Ноздрачева А.Д., 1991)

Ограда содержит полиморфные нейроны разных типов. (Покровский, 1997)

Функции неостриатума

Функции любых образований головного мозга определяется, прежде всего, их связями с неостриатумом. Базальные ганглии образуют многочисленные связи как между структурами входящими в их состав, так и другими отделами мозга. Эти связи представлены в виде параллельных петель, связывающих кору больших полушарий (двигательную, соматосенсорную, лобную) с таламусом. Информация поступает из вышеперечисленных зон коры, проходит через базальные ядра (хвостатое ядро и скорлупу) и черное вещество в двигательные ядра таламуса оттуда снова возвращается в эти же зоны коры - это скелетомоторная петля. Одна из таких петель управляет движениями лица и рта, контролирует такие параметры движения как сила, амплитуда и направление.

Другая петля - глазодвигательная (окуломоторная) специализируется на движении глаза (Агаджанян Н.А., 2001)

Неостриатум имеет также функциональные связи со структурами, лежащими вне этого круга: с черной субстанцией, красным ядром, вестибулярными ядрами, мозжечком, мотонейронами спинного мозга.

Обилие и характер связей неостриатума свидетельствует о его участии в интегративных процессах (аналитикосинтетическая деятельность, обучение, память, рассудок, речь, сознание), в организации и регуляции движений, регуляции работы вегетативных органов.

Некоторые из этих структур, например, черная субстанция, оказывает модулирующее влияние на хвостатое ядро. Взаимодействие черной субстанции с неостриатумом основано на прямых и обратных связях между ними. Стимуляция хвостатого ядра усиливает активность нейронов черного вещества. Стимуляция черного вещества приводит к увеличению, а его разрушение - уменьшает количество дофамина в хвостатом ядре. Дофамин синтезируется в клетках черной субстанции, а затем со скоростью 0,8 мм в час транспортируется к синапсам нейронов хвостатого ядра. В неостриатуме на 1 г нервной ткани накапливается до 10 мг дофамина, что в 6 раз больше, чем в других отделах переднего мозга, например в бледном шаре и в 19 раз больше, чем в мозжечке. Дофамин подавляет фоновую активность большинства нейронов хвостатого ядра, а это позволяет снять тормозящее действие этого ядра на активность бледного шара. Благодаря дофамину появляется растормаживающий механизм взаимодействия между нео- и палеостриатумом. При недостатке дофамина в неостриатуме, что наблюдается при дисфункции черного вещества, нейроны бледного шара растормаживаются, активизируют спинно-стволовые системы, это приводит к двигательным нарушениям в виде ригидности мышцы.

Во взаимодействиях неостриатума и палеостриатума между собой превалируют тормозные влияния. Если раздражать хвостатое ядро, то большая часть нейронов бледного шара тормозится, часть вначале возбуждается - затем тормозится, меньшая часть нейронов возбуждается.

Неостриатум и палеостриатум принимают участие в таких интегративных процессах как условнорефлекторная деятельность, двигательная активность. Это выявляется при их стимуляции, деструкции и при регистрации электрической активности.

Прямое раздражение некоторых зон неостриатума вызывает поворот головы в сторону, противоположную раздражаемому полушарию, животное начинает двигаться по кругу, т.е. возникает так называемая циркуляторная реакция. Раздражение других областей неостриатума вызывает прекращение всех видов активности человека или животного: ориентировочной, эмоциональной, двигательной, пищевой. При этом в коре мозга наблюдается медленно-волновая электрическая активность.

У человека во время нейрохирургической операции, стимуляция хвостатого ядра нарушает речевой контакт с больным: если больной что-то говорил, то он замолкает, а после прекращения раздражения не помнит, что к нему обращались. В случае травм черепа с симптомами раздражения неостриатума у больных отмечается ретро-, антеро- или ретроантероградная амнезия -выпадение памяти на событие, предшествующее травме. Раздражение хвостатого ядра на разных этапах выработки рефлекса приводит к торможению выполнения этого рефлекса.

Раздражение хвостатого ядра может полностью предотвратить восприятие болевых, зрительных, слуховых и других видов стимуляции. Раздражение вентральной области хвостатого ядра снижает, а дорсальной повышает слюноотделение.

Ряд подкорковых структур так же получает тормозное влияние со стороны хвостатого ядра. Так, стимуляция хвостатых ядер вызывала веретенообразную активность в зрительном бугре, бледном шаре, субталамическом теле, черном веществе и др.

Таким образом, специфичным для раздражения хвостатого ядра является торможение активности коры, подкорки, торможение безусловного и условно-рефлекторного поведения.

Хвостатое ядро имеет наряду с тормозящими структурами и возбуждающие. Поскольку возбуждение неостриатума тормозит движения, вызываемые с других пунктов мозга, то оно может тормозить и движения, вызываемые раздражением самого неостриатума. В то же время, если его возбудительные системы стимулируются изолированно, они вызывают то или иное движение. Если считать, что функции хвостатого ядра заключается в обеспечении перехода одного вида движения в другое, т.е прекращение одного движения и обеспечении нового путем создания позы, условий для изолированных движений, то становится понятным существование двух функций хвостатого ядра - тормозной и возбуждающей.

Эффекты выключения неостриатума показали, что функция его ядер связана с регуляцией тонуса мускулатуры. Так, при повреждении этих ядер наблюдались гиперкинезы типа непроизвольных мимических реакций, тремора, торсионного спазма, хореи (подергивания конечностей, туловища, как при нескоординированном танце), двигательной гиперактивности в форме бесцельного перемещения с места на место.

При повреждении неостриатума имеет место расстройства высшей нервной деятельности, затруднение ориентации в пространстве, нарушение памяти, замедление роста организма. После двустороннего повреждения хвостатого ядра условные рефлексы исчезают на длительный срок, выработка новых рефлексов затрудняется, дифференцировка, если и образуется, то отличается непрочностью, отсроченные реакции выработать не удается.

При повреждении хвостатого ядра общее поведение отличается застойностью, инертностью, трудностью переключений с одной формы поведения на другую. При воздействиях на хвостатое ядро имеют места расстройства движения: двустороннее повреждение полосатого тела ведет к безудержному стремлению движения вперед, одностороннее повреждение приводит к манежным движениям.

Несмотря на большое функциональное сходство хвостатого ядра и скорлупы, все же имеет ряд функций, специфичных для последней. Для скорлупы характерно участие в организации пищевого поведения; ряд трофических нарушений кожи, внутренних органов (например, гепатолентикулярная дегенерация) возникает при дефиците функции скорлупы. Раздражения скорлупы приводят к изменениям дыхания, слюноотделения.

Из фактов о том, что стимуляция неостриатума приводит к торможению условного рефлекса, следовало бы ожидать, что разрушение хвостатого ядра вызовет облегчение условнорефлекторной деятельности. Но оказалось, что разрушение хвостатого ядра также приводит к торможению условнорефлекторной деятельности. Видимо, функция хвостатого ядра не является просто тормозной, а заключается в корреляции и интеграции процессов оперативной памяти. Об этом свидетельствует также тот факт, что на нейронах хвостатого ядра конвергирует информация различных сенсорных систем, так как большая часть этих нейронов полисенсорна. Таким образом, неостриатум является подкорковым интегративным и ассоциативным центром.

Функции палеостриатума (бледного шара)

В отличие от неостриатума, стимуляция палеостриатума не вызывает торможения, а провоцирует ориентировочную реакцию, движение конечностей, пищевое поведение (жевание, глотание). Разрушение бледного шара приводит к гипомимии (маскообразное лицо), гиподинамии, эмоциональной тупости. Повреждение бледного шара вызывает у людей тремор головы, конечностей, причем этот тремор исчезает в покое, во время сна и усиливается при движении конечностей, речь становится монотонной. При повреждении бледного шара имеет место миоклония - быстрые подергивания отдельных мышечных групп или отдельных мышц рук, спины, лица. У человека с дисфункцией бледного шара начало движений становится трудным, исчезают вспомогательные и реактивные движения при вставании, нарушаются содружественные помахивания рук при ходьбе.

Функции ограды

Ограда тесно связана с островской корой как прямыми, так и обратными связями. Кроме того, прослеживаются связи ограды к лобной, затылочной, височной коре, показаны обратные связи от коры к ограде. Ограда связана с обонятельной луковицей, с обонятельной корой своей и контралатеральной стороны, а также с оградой другого полушария. Из подкорковых образований ограда связана со скорлупой, хвостатым ядром черным веществом, миндалевидным комплексом, зрительным бугром, бледным шаром.

Реакции нейронов ограды широко представлены на соматические, слуховые, зрительные раздражения, причем эти реакции, в основном, возбудительного характера. Атрофия ограды приводит к полной потере способности больного говорить. Стимуляция ограды вызывает ориентировочную реакцию, поворот головы, жевательные, глотательные, иногда рвотные движения. Эффекты раздражения ограды на условный рефлекс, предъявление стимуляции в разные фазы условного рефлекса тормозит условный рефлекс на счет, мало сказывается при условном рефлексе на звук. Если раздражение производилось одновременно с подачей условного сигнала, то условный рефлекс тормозился. Стимуляция ограды во время еды тормозит поведение пищи. При повреждении ограды левого полушария у человека наблюдается расстройство речи.

Таким образом базальные ганглии головного мозга являются интегративными центрами организации моторики, эмоции, высшей нервной деятельности. Причем, каждая из этих функций может быть усилена или заторможена активацией отдельных образований базальных ядер. (Ткаченко, 1994)

кишка мембранный мозг неостриатум

Базальные, или подкорковые, ядра представляют собой структуры переднего мозга, к которым относятся: хвостатое ядро, скорлупа, бледный шар и субталамическое ядро. Они располагаются под .

Развитие и клеточное строение хвостатого ядра и скорлупы одинаковы, поэтому их рассматривают как единое образование — полосатое тело. Базальные ядра имеют множественные афферентные и эфферентные связи с корой, промежуточным и средним мозгом, лимбической системой и мозжечком. В связи с этим они принимают участие в регуляции двигательной активности и, в частности, медленных или червеобразных движений. Примером таких двигательных актов является медленная ходьба, перешагивание через препятствия и т.д.

Опыты с разрушением полосатого тела доказали его важную роль в организации поведения животных.

Бледный шар является центром сложных двигательных реакций и участвует в обеспечении правильного распределения мышечного тонуса.

Свои функции бледный шар осуществляет опосредованно через образования — красное ядро и черную субстанцию.

Бледный шар также имеет связь с ретикулярной формацией. Он обеспечивает сложные двигательные реакции организма и некоторые вегетативные реакции. Стимуляция бледного шара вызывает активацию центра голода и пищевого поведения. Разрушение бледного шара способствует развитию сонливости и затруднению выработки новых условных рефлексов.

При поражении базальных ядер у животных и человека могут возникать разнообразные неконтролируемые двигательные реакции.

В целом базальные ядра принимают участие в регуляции не только моторной деятельности организма, но и ряда вегетативных функций.

Базальные ядра и их строение

Подкорковые (базальные) ядра относятся к подкорковым образованиям, которые имеют общее происхождение с большими полушариями и располагаются внутри их белого вещества, между лобными долями и промежуточным мозгом. К ним относятся хвостатое ядро и скорлупа , объединяемые общим названием «полосатое тело», поскольку скопление нервных клеток, образующих серое вещество, чередуется с прослойками белого вещества. Вместе с бледным шаром они образуют стриопаллидарную систему подкорковых ядер. К стриопаллидарной системе также относится ограда, субталамическое (под- бугорное) ядро и черная субстанция (рис. 1).

Рис. 1. Базальные ядра мозга и их связи с другими системами: А — анатомия базальных ядер; Б — связи базальных ядер с кортикоспинальной и мозжечковой системами, контролирующими движения

Стриопаллидарная система — это связующее звено между корой и стволом мозга. К этой системе подходят афферентные и эфферентные пути.

Функционально базальные ядра являются надстройкой над красными ядрами среднего мозга и обеспечивают пластический тонус, т.е. способность удерживать длительное время врожденную или выученную позу, — например, поза кошки, которая стережет мышь, или длительное удержание позы балериной, выполняющей какое-либо па. При удалении коры мозга наблюдается «восковая ригидность», которая является выражением пластического тонуса без регулирующего влияния коры головного мозга. Животное, лишенное коры головного мозга, надолго застывает в одной позе.

Подкорковые ядра обеспечивают осуществление медленных, стереотипных, рассчитанных движений, а центры базальных ганглиев — регуляцию врожденных и приобретенных программ движения, а также регуляцию мышечного тонуса.

Нарушение различных структур подкорковых ядер сопровождается многочисленными двигательными и тоническими сдвигами. Так, у новорожденных неполное созревание базальных ядер приводит к резким судорожным сгибательным движениям. По мерс развития этих структур появляется плавность, рассчитанность движений.

Одна из главных задач базальных ядер при осуществлении двигательного контроля — контроль комплексных стереотипов моторной деятельности (например, написание букв алфавита). Когда имеется серьезное повреждение базальных ядер, кора больших полушарий не может обеспечить нормальное поддержание этого комплексного стереотипа. Вместо этого воспроизведение уже однажды написанного становится затруднительным, как будто приходится учиться писать в первый раз. Примером других стереотипов, которые обеспечиваются базальными ядрами, являются разрезание бумаги ножницами, забивание гвоздя, копание лопатой земли, контроль движений глаз и голоса и другие хорошо отработанные движения.

Хвостатое ядро играет важную роль в сознательном (когнитивном) контроле двигательной активности. Большинство наших двигательных актов возникает в результате их обдумывания и сопоставления с информацией, имеющейся в памяти.

Нарушение функций хвостатого ядра сопровождается развитием гиперкинезов типа непроизвольных мимических реакций, тремора, атетоза, хореи (подергивание конечностей, туловища, как при некоординированном танце), двигательной гиперактивностью в форме бесцельного перемещения с места на место.

Хвостатое ядро принимает участие в речевых, двигательных актах. Так, при расстройстве передней части хвостатого ядра нарушается речь, возникают затруднения в повороте головы и глаз в сторону звука, а повреждение задней части хвостатого ядра сопровождается потерей словарного запаса, снижением кратковременной памяти, прекращением произвольных дыханий, задержкой речи.

Раздражение полосатого тела у животного приводит к наступлению сна. Этот эффект объясняется тем, что полосатое тело вызывает торможение активирующих влияний неспецифических ядер таламуса на кору. Полосатое тело регулирует ряд вегетативных функций: сосудистые реакции, обмен веществ, теплообразование и тепловыделение.

Бледный шар регулирует сложные двигательные акты. При его раздражении наблюдается сокращение мышц конечностей. Повреждение бледного шара вызывает маскообразность лица, тремор головы, конечностей, монотонность речи, нарушаются сочетанные движения рук и ног при ходьбе.

С участием бледного шара осуществляется регуляция ориентировочных и оборонительных рефлексов. При нарушении бледного шара изменяются пищевые реакции, например, крыса отказывается от пищи. Это объясняется потерей связи бледного шара с гипоталамусом. У кошек и крыс наблюдается полное исчезновение пищедобывательных рефлексов после двустороннего разрушения бледного шара.