Сенсорные функции таламуса. Основные структуры промежуточного мозга

Таламус. Морфофункциональная организация. Функции

Таламус, или зрительный бугор, является составной частью промежуточного мозга. Он занимает центральное место между большими полушариями. Особая локализация таламуса, его теснейшие связи с корой больших полушарий головного мозга и афферентными системами обусловливают особую функциональную роль этого образования. Как отмечал Уолкер (1964), «… в таламусе, этой огромной нейронной массе, лежит ключ к тайнам церебральной коры…».

Таламус представляет собой массивное парное образование, имеющее яйцевиднуюформу, длинная ось которого ориентированав дорсовентральномнаправлении. Медиальная поверхность таламуса образует стенку III желудочка, верхняя является дном бокового желудочка, наружная прилегает к внутренней капсуле, а нижняя переходит в гипоталамическую область. Таламус является ядерным образованием. В нем различают до 40 пар ядер. В настоящее время существует множество делений ядер таламуса на группы, в основе которых лежат различные принципы. Согласно Уолкеру (1966), а также Смирнову (1972), по топографическому признаку все ядра делят на 6 групп.

1. Передняя группа ядер включает ядра, составляющие передний бугор таламуса: переднее дорсальное (n. AD), переднее вентральное (n. AV), переднее медиальное (n. AM) и др.

2. Группа ядер средней линии включает в себя центральное медиальное (n. Cm), паравентрикулярное (n. Pv), ромбовидное (n. Rb) ядра, центральное серое вещество (Gc) и др.

3. Медиальная и интраламинарная группа содержит медиодорсальное (n. MD), центральное латеральное (n. CL), парацентральное (n. Pc) и другие ядра.

4. Вентролатеральная ядерная группа состоит из вентрального и латерального отделов. Вентральный отдел содержит вентральное переднее (n. VA), вентральное латеральное (n. VL) и вентральное заднее (n. VP) ядра. Латеральный отдел состоит из латерального дорсального (n. LD) и латерального заднего (n. LP) ядер. Здесь же находится ретикулярное ядро таламуса (n. R), ему принадлежит особое место в реализации функций таламуса.

5. Задняя группа ядер –подушечное ядро (PuCV), наружное и внутреннее коленчатые тела (n. GL, n. GM) и т.д.

6. Претектальная ядерная группа (иногда ее относят к задней группе ядер) содержит претектальное ядро (n. Prt), заднее ядро (n. P), претектальную зону и ядра задней спайки.

С функциональной точки зрения все ядра таламуса подразделяют на 3 группы:

1 группа – специфические (релейные) ядра (сенсорные и несенсорные);

2 группа – неспецифические ядра;

3 группа – ассоциативные ядра.

Специфические ядра имеют отчетливую топографическую и функциональную разграниченность проекций к определенным областям коры больших полушарий. Специфические ядра называют также релейными, переключающими. Специфические ядра делят на сенсорные релейные и несенсорные релейные. Несенсорные релейные ядра, в свою очередь, делятся на моторные ядра и переднюю группу. Отдельные морфологи переднюю группу и ряд неспецифических ядер называют лимбическими ядрами таламуса, учитывая их проекции на лимбическую кору. Например, специфические несенсорные ядра – переднее дорсальное, переднее медиальное и переднее вентральное – проецируются на различные поля поясной извилины. Релейные ядра таламуса получают афференты от лемнисковых систем (спинальной, тригемиальной, слуховой и зрительной), от некоторых структур головного мозга (вентральное переднее ядро таламуса, мозжечок, гипоталамус, полосатое тело) и имеют прямой выход в кору головного мозга (проекционные области, моторная и лимбическая кора).

Каждое релейное ядро получает нисходящие волокна из собственной кортикальной проекционной зоны. Тем самым создается морфологическая основа для функциональных связей между таламическим ядром и его корковой проекцией в виде замкнутых нейронных кругов циркулирующего возбуждения, посредством которых осуществляются их взаимно регулирующие отношения.

Нейронные поля релейных ядер таламуса содержат: 1) таламокортикальные релейные нейроны, аксоны которых идут в III и IV слоя коры;
2) длинноаксонные интегративные нейроны, аксоны которых дают коллатерали в ретикулярную формацию среднего мозга и другие ядра таламуса;
3) короткоаксонные нейроны, аксоны которых не выходят за пределы таламуса. Значительная часть нейронов релейных ядер отвечает только за стимуляцию определенной модальности, но имеются также и мультисенсорные нейроны. Релейным ядром для импульсации, несущей зрительную информацию, является наружное коленчатое тело, проецирующееся на зрительную кору (поля 17, 18, 19). Слуховые импульсы переключаются во внутреннем коленчатом теле. Проекционной корковой зоной являются поля 41, 42 и поперечная извилина Гешля. Вентральное переднее ядро таламуса (n. VA) получает обильную афферентацию из базальных ганглиев. Это ядро посылает прямые афференты к коре лобной области, оперкулуму и островку. Через это ядро проходят без переключения волокна от дорсомедиального ядра к лобной коре и к ретикулярному таламическому ядру. Благодаря вентральному переднему ядру хвостатое ядро проецируется на кору. Вентролатеральное ядро (n. VL) некоторыми авторами относится к одному из центров, который регулирует моторную активность и оказывает значительное влияние на активность пирамидных нейронов. Это ядро получает основные афференты по таламическому пучку лентикулярной петли, который начинается от нейронов внутреннего членика бледного шара. Другая часть афферентов приходит из красного и зубчатого ядер мозжечка. Из зубчатого ядра выходят прямые волокна, которые проходят красное ядро, а затем переключаются на нейроны рубро-таламического ядра и направляются в вентролатеральное ядро. Большое количество волокон к этому ядру приходит из ядра Кахала, расположенного в ретикулярной формации ствола мозга.

Неспецифические ядра образуют диффузную таламическую систему, филогенетически древнюю часть таламуса и представлены преимущественно интраламинарной группой и ядрами средней линии. Они получают афференты из филогенетически древней экстралемнисковой системы и спинного мозга, бульбарных отделов ретикулярной формации и, за некоторым исключением, не имеют прямого выхода к коре больших полушарий головного мозга. Выход к коре мозга осуществляется через оральный полюс ретикулярного ядра таламуса, который формирует диффузные связи с корой мозга. На нейронах этой группы ядер оканчивается некоторое количество волокон, составляющих основные каналы специфической афферентации, но главным является то, что они не связаны с проведением возбуждения какой-либо одной модальности и не имеют четких проекций в коре. Данная группа ядер выполняет модулирующие функции.

Ассоциативные ядра таламуса имеют, как правило, ограниченный афферентный вход из периферии, их афференты берут начало в других ядрах таламуса. Между ассоциативными ядрами таламуса и ассоциативными полями коры головного мозга, в особенности у высокоорганизованных млекопитающих, устанавливается мощная система связей. К ассоциативным ядрам поступает разнообразная афферентация от специфических и неспецифических ядер таламуса. Поэтому можно предполагать возможность осуществления здесь более сложных интегративных процессов, чем в других ядрах таламуса. Деление ядер на специфические, неспецифические и ассоциативные в какой-то мере условное.

Эфферентные волокна ассоциативных ядер направляются непосредственно в ассоциативные поля коры больших полушарий, где эти волокна, отдавая по пути коллатерали в IV и V слои коры, идут ко II и I слоям, вступая в контакт с пирамидными нейронами посредством аксо-дендри-
тических синапсов. Импульсы, возникающие в связи с раздражением рецепторов, вначале достигают релейных сенсорных и неспецифических ядер таламуса, где они переключаются на нейроны ассоциативных ядер таламуса, а после определенной организации и интеграции с потоками других импульсаций направляются в ассоциативные области коры. Многочисленные афферентные и эфферентные связи, а также полисенсорность нейронов ассоциативных ядер лежат в основе их интегративной функции. Ассоциативные ядра обеспечивают взаимодействие как таламических ядер, так и различных корковых полей и в определенной степени (учитывая межполушарные связи ассоциативных нейронов) совместную работу больших полушарий мозга. Ассоциативные ядра проецируются не только на ассоциативные области коры, но и на специфические проекционные поля. В свою очередь, кора головного мозга посылает волокна к ассоциативным таламическим ядрам, осуществляя регуляцию их деятельности. Наличие двусторонних связей дорсомедиального ядра с фронтальной корой, подушкой и латеральных ядер с теменной областью коры, а также существование связей ассоциативных ядер с таламическим и кортикальным уровнем специфических афферентных систем дало возможность А.С. Батуеву (1981) развить положение о наличии в составе целостного мозга таламофронтальной и таламотеменной ассоциативных систем, участвующих в формировании различных этапов эфферентного синтеза.

Подушка (pulvinar) является самым крупным таламическим образованием у человека. Главные афференты поступают в нее из коленчатых тел, неспецифических ядер и других таламических ядер. Кортикальная проекция от подушки идет к височно-теменно-затылочным областям новой коры, играющим важную роль в гностических и речевых функциях. При деструкции подушки, связанной с теменной корой, появляются нарушения «схемы тела». Разрушение некоторых отделов подушки могут устранять тяжелые боли.

В дорсомедиальное ядро (n. MD) таламуса афферентация поступает из таламических ядер, ростральных отделов ствола, гипоталамуса, миндалины, перегородки, свода, базальных ганглиев и префронтальной коры. Эти ядра проецируются на лобную ассоциативную и лимбическую кору. При двусторонних разрушениях дорсомедиальных ядер наблюдаются преходящие расстройства психической деятельности. Дорсомедиальное ядро рассматривают как таламический центр для лобных и лимбических отделов коры, участвующих в системных механизмах сложных поведенческих реакций, включая эмоциональные и мнестические процессы.

Функции таламуса. Таламус является интегративной структурой центральной нервной системы. В таламусе существует многоуровневая система интегративных процессов, которая не только обеспечивает проведение афферентной импульсации к коре головного мозга, но и выполняет множество других функций, позволяющих осуществлять координированные, хотя и простые реакции организма, проявляющиеся даже у таламических животных. Важно то, что основную роль во всех формах интегративных процессов в таламусе играет процесс торможения.

Интегративные процессы таламуса носят многоуровневый характер.

Первый уровень интеграции в таламусе осуществляется в гломерулах. Основу гломерулы составляет дендрит релейного нейрона и пресинаптические отростки нескольких типов: терминали восходящих афферентных и кортико-таламических волокон, а также аксонов интернейронов (клетки типа Гольджи П). Направленность синаптической передачи в гломерулах подчинена строгим закономерностям. В ограниченной группе синаптических образований гломерулы возможно столкновение разнородных афферентаций. Несколько гломерул, расположенных на соседних нейронах, могут взаимодействовать друг с другом благодаря малым безаксонным элементам, у которых розетки терминалей дендритов одной клетки входят в состав нескольких гломерул. Полагают, что объединение нейронов в ансамбли с помощью таких безаксонных элементов или с помощью дендро-дендритических синапсов, которые обнаружены в таламусе, может быть основой для поддержания синхронизации в ограниченной популяции таламических нейронов.

Вторым, более сложным, интернуклеарным уровнем интеграции является объединение значительной группы нейронов таламического ядра с помощью собственных (внутриядерных) тормозных интернейронов. Каждый тормозный вставочный нейрон устанавливает тормозные контакты со множеством релейных нейронов. В абсолютном выражении число интернейронов к числу релейных клеток составляет 1:3 (4), но за счет перекрытия взаимных тормозных интернейронов создаются такие соотношения, когда один интернейрон бывает связан с десятками и даже сотнями релейных нейронов. Всякое возбуждение такого вставочного нейрона приводит к торможению значительной группы релейных нейронов, в результате чего их деятельность синхронизируется. На этом уровне интеграции большое значение придается торможению, которое обеспечивает контроль афферентного входа в ядро и которое, вероятно, наиболее представлено в релейных ядрах.

Третий уровень интегративных процессов, происходящих в таламусе без участия коры головного мозга, представлен интраталамическим уровнем интеграции. Решающую роль в этих процессах играют ретикулярное ядро (n. R) и вентральное переднее ядро (n. VA) таламуса, предполагается участие и других неспецифических ядер таламуса. В основе интраталамической интеграции лежат также процессы торможения, осуществляющиеся за счет длинных аксональных систем, тела нейронов которых находятся в ретикулярном ядре и, возможно, в других неспецифических ядрах. Большинство аксонов таламокортикальных нейронов релейных ядер таламуса проходит через нейропиль ретикулярного ядра таламуса (охватывающего таламус почти со всех сторон), отдавая в него коллатерали. Предполагается, что нейроны n. R осуществляют возвратное торможение таламокортикальных нейронов релейных ядер таламуса.

Кроме контроля таламокортикального проведения, интрануклеарные и интраталамические интегративные процессы могут иметь важное значение для определенных специфических ядер таламуса. Так, интрануклеарные тормозные механизмы могут обеспечить дискриминативные процессы, усиливая контраст между возбужденными и интактными участками рецептивного поля. Предполагается участие ретикулярного ядра таламуса в обеспечении фокусированного внимания. Это ядро благодаря широкоразветвленной сети своих аксонов может затормаживать нейроны тех релейных ядер, к которым в данный момент не адресуется афферентный сигнал.

Четвертый, наивысший уровень интеграции, в котором принимают участие ядра таламуса, – это таламокортикальный. Кортико-фугальная импульсация играет важнейшую роль в деятельности ядер таламуса, контролируя проведение и многие другие функции, начиная с деятельности синаптических гломерул и заканчивая системами нейронных популяций. Влияние кортико-фугальной импульсации на деятельность нейронов ядер таламуса носит фазный характер: вначале на короткий промежуток наблюдается облегчение таламокортикального проведения (в среднем до 20 мс), а затем на относительно длинный период (в среднем до 150 мс) происходит торможение. Допускается и тоническое влияние кортико-фугальной импульсации. За счет связей нейронов таламуса с различными областями коры головного мозга и обратных связей устанавливается сложная система таламокортикальных взаимоотношений.

Таламус, реализуя свою интегративную функцию, принимает участие в следующих процессах:

1. Все сенсорные сигналы, кроме возникающих в обонятельной сенсорной системе, достигают коры через ядра таламуса и там осознаются.

2. Таламус является одним из источников ритмической активности в коре мозга.

3. Таламус принимает участие в процессах цикла сон – бодрствование.

4. Таламус является центром болевой чувствительности.

5. Таламус принимает участие в организации различных типов поведения, в процессах памяти, в организации эмоций и т.д.

Каждый таламус (см. рис. 8.1; 8.2) представляет собой яйцевидное образование длиной примерно 4 см. С латеральной стороны таламус граничит с хвостатым ядром (см. параграф 9.2), отделяясь от него конечной полоской {stria terminalis). Медиальные поверхности таламусов образуют боковые стенки верхней части III желудочка. Между этими стенками находится межбугорное сращение (серое вещество), соединяющее правый и левый таламусы. Передний конец таламуса несколько заострен, а задний расширен и утолщен.

Рис. 8.2.

  • 1-7 - проекционные ядра; 8-11 - ассоциативные ядра. 1 - медиальное коленчатое тело (CGM); 2 - латеральное коленчатое тело (CGL); 3-4 - ядра вентробазального комплекса (3 - VPM, 4 - VPL); 5-6 - двигательные ядра (5 - вентролатеральное (VL), 6 - переднее вентральное (VA)); 7 - лимбические ядра (AV, AD, AM);
  • 8 - медиодорсальное ядро (MD); 9 - дорсолатеральное ядро (LD);
  • 10 - постеролатеральное ядро (LP); 11 - подушка (Pul)

Основная масса таламуса представлена серым веществом, сгруппированным в ядра (примерно от 40 до 150 по разным классификациям). Большинство ядер таламуса принято называть аббревиатурами из латинских букв, составленных из латинского названия ядра.

В ядрах таламуса происходит не только переключение информации, но и ее обработка. Одна из основных особенностей этой обработки состоит в избирательном проведении информации в кору больших полушарий. Иными словами, таламус выполняет роль фильтра, пропуская в конечный мозг либо очень значимые (сильные, новые) сигналы, либо сигналы, связанные с текущей деятельностью коры больших полушарий. Таким образом, таламус является одной из ключевых структур, обеспечивающих и поддерживающих процессы внимания. Для многих ядер таламуса, особенно проекционных, характерно присутствие гломерул, что говорит о сложных процессах анализа информации.

Основные классификации таламических ядер связаны или с их расположением, или с их функцией. Серая масса таламуса разделяется медуллярными пластинками (прослойками белого вещества) на несколько ядер- ных групп - переднюю, медиальную, латеральную, заднюю и ядра средней линии (область межбугорного сращения и околожелудочковые отделы).

Классификация ядер таламуса. Более подробно мы рассмотрим классификацию ядер таламуса, основанную на их функциях и организации связей. С этой точки зрения все таламические ядра делят на проекционные, ассоциативные и неспецифические.

Проекционные ядра - это переключательные (релейные) ядра, получающие входы от очень ограниченного количества внеталамических структур. Волокна из этих структур образуют синапсы на нейронах проекционных ядер, а аксоны последних проводят импульсацию в определенные локальные области коры больших полушарий, отвечающие за определенные функции. В свою очередь каждое проекционное ядро получает нисходящие волокна из собственной проекционной корковой зоны. Проекционные ядра подразделяются на сенсорные, двигательные и лимбические.

Сенсорные (чувствительные) ядра обеспечивают быстрое проведение сенсорной афферентации от конкретных сенсорных систем в первичные проекционные зоны коры больших полушарий. Пути от всех рецепторов (за исключением обонятельных) проходят через таламус и имеют там свои представительства. Главными сенсорными ядрами таламуса являются:

  • - латеральное (наружное) коленчатое тело (ЛКТ; corpus geniculatum laterale, CGL), относящееся к задней группе ядер. Это зрительное сенсорное ядро, на котором оканчиваются волокна зрительного тракта и ручек верхних холмиков четверохолмия. Эфференты ЛКТ идут в первичную и вторичную зрительную кору (поля 17 и 18) в затылочной доле, в ассоциативное ядро подушку и в некоторые другие ядра таламуса. ЛКТ состоит из дорсальной и вентральной частей, причем вентральная имеет ядерную организацию, а дорсальная - корковую, она состоит из шести слоев;
  • - медиальное (внутреннее) коленчатое тело (MKT; corpus geniculatum mediate, CGM) также относится к задней группе ядер. Это слуховое сенсорное ядро, на котором оканчиваются волокна латеральной петли и ручек нижних холмиков четверохолмия. Эфференты МКТ идут в первичную и вторичную слуховую кору (поля 41 и 42) в височной доле, к некоторым таламическим ядрам (рис. 9.9). Отмстим, что ЛКТ и МКТ объединяют под названием метаталамус (забугорье);
  • - проекционным ядром систем кожной и мышечной чувствительности является вентробазальный комплекс, или заднее вентральное ядро таламуса. Оно находится в вентролатеральной (нижней боковой) области таламуса. Вентробазальный комплекс состоит из трех ядер - VPL (п. ventralis posterolateralis ), VPM (п. ventralisposteromedialis) и VPI (n. ventralis posterior intermedins). Здесь заканчиваются волокна от нежного и клиновидного ядер продолговатого мозга (медиальный лемниск), спинно-таламические тракты, волокна от чувствительных ядер тройничного нерва и ядра одиночного пути. Аксоны от этих ядер направляются в сенсомоторную кору (поля 1, 2, 3 в постцентральной извилине и 4, б в прецентральной).

Двигательные (моторные) проекционные ядра таламуса тоже расположены в его нижней боковой части перед вентробазальным комплексом, поэтому их часто называют вентролатеральными ядрами. Это два крупных ядра VL (п. ventralis lateralis) и VA (п. ventralis anterior). Афферентами этих ядер являются структуры, связанные с организацией движений, такие как зубчатое ядро мозжечка, бледный шар (ядро конечного мозга), вестибулярные ядра, черная субстанция. Эфференты идут в моторную (поле 4) и премоторную (поле 6) кору.

Для ядер вентробазального комплекса и двигательных ядер характерна сомаготония (топографическое представительство поверхности тела или мышц).

Лимбические ядра часто называют передними ядрами таламуса из-за их расположения. Это ядра AV (п. anteroventralis ), AD (п . anterodorsalis) и AM (п anteromedialis). Они входят в ЛС мозга (см. параграф 9.4) и проводят сенсорную информацию в лимбические отделы коры больших полушарий, главным образом в поясную извилину (рис. 9.5). Основные афференты к этим ядрам приходят от мамиллярных тел гипоталамуса, сюда приходит также часть волокон свода (см. параграф 8.2).

На ассоциативных ядрах таламуса оканчиваются волокна не от одной, а сразу от нескольких сенсорных систем, а также от других ядер таламуса и коры больших полушарий. Это обеспечивает их участие в интегративных функциях головного мозга, т.е. в объединении разных видов чувствительности. Эти ядра посылают свои волокна в ассоциативные зоны коры больших полушарий (см. параграф 9.3). Дорсальные ядра - эволюционно молодые отделы промежуточного мозга. Их формирование идет параллельно развитию высших ассоциативных центров коры.

Ассоциативные ядра LP (п. lateralis posterior ), LD (п. lateralis dorsalis) и Pul (pulvinar , подушка) вместе с зонами их проекций в теменной доле коры больших полушарий рассматривают как таламо-париетальную ассоциативную систему (lobus parietalis , теменная доля коры), функции которой связаны с речью, а также с распознаванием образов и схемы тела. Отдельно надо отметить, что ассоциативное ядро подушка также тесно связано со зрительной системой. Оно получает афференты от ЛКТ, верхних холмиков четверохолмия, зрительной коры, а само посылает волокна в зрительную кору (поля 17, 18, 19). Поэтому подушку называют иногда зрительным ассоциативным ядром.

Медиодорсальнос, или дорсомедиальное, ядро MD {п. medialis dorsalis ) имеет очень много афферентов. Оно получает волокна от сенсорных и неспецифических ядер таламуса, от ядра конечного мозга миндалины, от гипоталамуса, от гиппокампа, от орбитальной и височной коры и др. Характерным для этого ядра является то, что его корковые эфференты идут в лобные ассоциативные зоны коры, что привело к формированию представлений о таламо-фроитальиой ассоциативной системе. Функции этой системы окончательно неясны, но в целом их можно определить как формирование сложных поведенческих актов и контроль эмоциональных состояний.

Неспецифические (медиальные) ядра таламуса обычно рассматриваются как ядра РФ, осуществляющие связь с ретикулярными ядрами ствола. Они получают афференты от большого числа образований и посылают диффузные проекции па обширные области коры, оказывая влияние на уровень ее активации.

К неспецифическим относятся ядра средней линии, расположенные в его внутренней части, например ядро СМ (п . centralis medialis), интраламинарные ядра, лежащие среди волокон медуллярной пластинки (lamina , пластинка). К последним принадлежат, например, крупное ядро - срединный центр , или СеМ (icentrum medianum ), и лежащее медиально от него парафасцикулярное ядро PaF (п. parafascicularis). СеМ и PaF принимают участие в передаче медленных диффузных компонентов болевых ощущений (см. гл. 15).

Неспецифическим является и ретикулярное таламическое ядро Ret ((Rt), п. reticularis thalami ), относящееся к латеральной группе ядер. Это тормозное ядро, ограничивающее активацию остальных таламических ядер.

Основную массу промежуточного мозга (20г) составляет таламус. Парный орган яйцевидной формы, передняя часть которого заострена (передний бугорок), а задняя расширенная (подушка) нависает над коленчатыми телами. Левый и правый таламусы соединены межталамической спайкой. Серое вещество таламуса разделено пластинками белого вещества на переднюю, медиальную и латеральную части. Говоря о таламусе, включают также метаталамус (коленчатые тела), принадлежащий к таламической области. Таламус наиболее развит у человека. Таламус (thalamus), зрительный бугор, - ядерный комплекс, в котором происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка, базальных ганглиев головного мозга.

Морфофункциональная организация

Таламус (thalamus), зрительный бугор, - ядерный комплекс, в котором происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка, базальных ганглиев головного мозга. В ядрах таламуса происходит переключение информации, поступающей от экстеро-, проприорецепторов и интерорецепторов и начинаются таламокортикальные пути. Учитывая, что коленчатые тела являются подкорковыми центрами зрения и слуха, а узел уздечки и переднее зрительное ядро участвует в анализе обонятельных сигналов, можно утверждать, что зрительный бугор в целом является подкорковой «станцией» для всех видов чувствительности. Здесь раздражения внешней и внутренней среды интегрируются, после чего поступают в кору большого мозга.

Зрительный бугор является центром организации и реализации инстинктов, влечений, эмоций. Возможность получать информацию о состоянии множества систем организма позволяет таламусу участвовать в регуляции и определении функционального состояния организма. В целом (подтверждением тому служит наличие в таламусе около 120 разнофункциональных ядер).

Функции ядер таламуса

Ядра образуют своеобразные комплексы, которые можно разделить по признаку проекции в кору на 3 группы. Передняя проецирует аксоны своих нейронов в поясную извилину коры большого мозга. Медиальная - в лобную долю коры. Латеральная - в теменную, височную, затылочную доли коры. Ядра таламуса функционально по характеру входящих и выходящих из них путей делятся на специфические, неспецифические и ассоциативные.

Специфические сенсорные и несенсорные ядра

К специфическим ядрам относятся переднее вентральное, медиальное, вентролатеральное, постлатеральное, постмедиальное, латеральное и медиальное коленчатые тела. Последние относятся к подкорковым центрам зрения и слуха соответственно. Основной функциональной единицей специфических таламических ядер являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении информации, идущей в кору большого мозга от кожных, мышечных и других рецепторов.

В свою очередь специфические (релейные) ядра делятся на сенсорные и несенсорные. От специфических сенсорных ядер информация о характере сенсорных стимулов поступает в строго определенные участки III-IV слоев коры большого мозга. Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности, так как ядра таламуса, как и кора большого мозга, имеют соматотопическую локализацию. Отдельные нейроны специфических ядер таламуса возбуждаются рецепторами только своего типа. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Сюда же конвергируют сигналы от интерорецепторов зон проекции блуждающего и чревного нервов, гипоталамуса. Латеральное коленчатое тело имеет прямые эфферентные связи с затылочной долей коры большого мозга и афферентные связи с сетчаткой глаза и с передними буграми четверохолмий. Нейроны латеральных коленчатых тел по-разному реагируют на цветовые раздражения, включение, выключение света, т.е. могут выполнять детекторную функцию. В медиальное коленчатое тело поступают афферентные импульсы из латеральной петли и от нижних бугров четверохолмий. Эфферентные пути от медиальных коленчатых тел идут в височную зону коры большого мозга, достигая там первичной слуховой области коры.

Несенсорные ядра переключают в кору несенсорную импульсацию, поступающую в таламус из разных отделов головного мозга. В передние ядра импульсация поступает в основном из сосочковых тел гипоталамуса. Нейроны передних ядер проецируются в лимбическую кору, откуда аксонные связи идут к гиппокампу и опять к гипоталамусу, в результате чего образуется нейронный круг, движение возбуждения по которому обеспечивает формирование эмоций («эмоциональное кольцо Пейпеца»). В связи с этим передние ядра таламуса рассматриваются как часть лимбической системы. Вентральные ядра участвуют в регуляции движения, выполняя таким образом моторную функцию. В этих ядрах переключается импульсация от базальных ганглиев, зубчатого ядра мозжечка, красного ядра среднего мозга, которая после этого проецируется в моторную и премоторную кору. Через эти ядра таламуса происходит передача в моторную кору сложных двигательных программ, образованных в мозжечке и базальных ганглиях.

Неспецифические ядра

Эволюционно более древняя часть таламуса, включающая парные ретикулярные ядра и интраламинарную (внутрипластинчатую) ядерную группу. Ретикулярные ядра содержат преимущественно мелкие, многоотростчатые нейроны и функционально рассматриваются как производное ретикулярной формации ствола мозга. Нейроны этих ядер образуют свои связи по ретикулярному типу. Их аксоны поднимаются в кору большого мозга и контактируют со всеми ее слоями, образуя диффузные связи. К неспецифическим ядрам поступают связи из ретикулярной формации ствола мозга, гипоталамуса, лимбической системы, базальных ганглиев, специфических ядер таламуса. Благодаря этим связям неспецифические ядра таламуса выступают в роли посредника между стволом мозга и мозжечком, с одной стороны, и новой корой, лимбической системой и базальными ганглиями, с другой стороны, объединяя их в единый функциональный комплекс.

Ассоциативные ядра

Ассоциативные ядра принимают импульсацию от других ядер таламуса. Эфферентные выходы от них направляются, главным образом, в ассоциативные поля коры. Основными клеточными структурами этих ядер являются мультиполярные, биполярные трехотростчатые нейроны, т. е. нейроны, способные выполнять полисенсорные функции. Ряд нейронов изменяет активность только при одновременном комплексном раздражении. Подушка получает главную импульсацию от коленчатых тел и неспецифических ядер таламуса. Эфферентные пути идут от нее в височно-теменно-затылочные зоны коры, участвующие в гностических (узнавание предметов, явлений), речевых и зрительных функциях (интеграция слова со зрительным образом), а также в восприятии «схемы тела». Медиодорсальное ядро получает импульсацию от гипоталамуса, миндалины, гиппокампа, таламических ядер, центрального серого вещества ствола. Проекция этого ядра распространяется на ассоциативную лобную и лимбическую кору. Оно участвует в формировании эмоциональной и поведенческой двигательной активности. Латеральные ядра получают зрительную и слуховую импульсацию от коленчатых тел и соматосенсорную импульсацию от вентрального ядра.

Сложное строение таламуса, наличие в нем взаимосвязанных специфических, неспецифических и ассоциативных ядер, позволяет ему организовывать такие двигательные реакции, как сосание, жевание, глотание, смех. Двигательные реакции интегрируются в таламусе с вегетативными процессами, обеспечивающими эти движения.

text_fields

text_fields

arrow_upward

Промежуточный мозг интегри­рует сенсорные, двигательные и вегетативные реакции, необходимые для целостной деятельности организма. Основными образованиями промежуточного мозга являются:

      • таламус,
      • гипоталамус,
      • гипофиз.

Функции таламуса

text_fields

text_fields

arrow_upward

Таламус - структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору головного мозга от нейронов спинного мозга, среднего мозга, моз­жечка, базальных ганглиев. Возможность получать информацию о состоянии множества систем организма позволяет ему участвовать в регуляции и определять функциональное состояние организма в целом. Это подтверждается уже тем, что в таламусе около 120 разнофункциональных ядер.

Ядра образуют своеобразные комплексы , которые можно разделить по признаку проекции в кору на три группы:

      • передняя - проецирует аксоны своих нейронов в поясную кору;
      • медиальная - в любую;
      • латеральная - в теменную, височ­ную, затылочную.

По проекциям определяется и функция ядер. Такое деление не абсолютно, так как часть волокон от ядер тала­муса идет в корковые образования, часть - в разные зоны мозга.

Функциональная значимость ядер таламуса определяется не только их проекциями на другие структуры мозга, но и тем, какие струк­туры посылают к нему свою информацию. В таламус приходят сигналы от зрительной, слуховой, вкусовой, кожной, мышечной систем, от ядер черепно-мозговых нервов ствола, мозжечка, блед­ного шара, продолговатого и спинного мозга.

Функционально, по характеру нейронов входящих и выходящих из таламуса, его ядра делят на специфические, неспецифические и ассоциативные.

К специфическим ядрам относят:

      • переднее вентральное, медиаль­ное;
      • вентролатеральное, постлатеральное, постмедиальное;
      • латераль­ное и медиальное коленчатые тела.

Последние относятся, соответ­ственно, к подкорковым центрам зрения и слуха.

Основной функциональной единицей специфических таламических ядер являются «релейные» нейроны, которые имеют мало дендритов, длинный аксон и выполняют переключательную функцию - здесь происходит переключение путей, идущих в кору от кожной, мышеч­ной и других видов чувствительности.

От специфических ядер информация о характере сенсорных сти­мулов поступает в строго определенные участки 3-4 слоев коры (соматотопическая локализация). Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности. Это связано также с тем, что сами ядра таламуса имеют (так же, как и кора) соматотопическую локализацию. Отдельные нейроны специфических ядер таламуса возбуждаются афферентациеи, посту­пающей только от своего типа рецепторов. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Сюда же конвергируют сигналы от интероцепторов зон проекции блуждающего и чревного нервов, от гипоталамуса.

Ассоциативные ядра - медиодорсальные, латеральные, дорсальные и подушка таламуса. Основные клеточные структуры этих ядер: мультиполярные, биполярные, трехотростчатые нейроны, т.е. нейро­ны, способные выполнять полисенсорные функции. Наличие поли­сенсорных нейронов способствует взаимодействию на них возбужде­ний разных модальностей и созданию интегрированного сигнала для передачи в ассоциативную кору мозга. Аксоны от нейронов ассоци­ативных ядер таламуса идут 1 и 2 слоями ассоциативных и частично проекционных областей, по пути отдавая коллатерали в 4 и 5 слои коры, образуя аксосоматические контакты с пирамидными нейрона­ми.

Неспецифические ядра таламуса представлены срединным центром, парацентральным ядром, центральным медиальным и латеральным, субмедиальным, вентральным передним, парафасцикулярным ком­плексом, ретикулярным ядром, перивентрикулярной и центральной серой массой. Нейроны этих ядер образуют связи по ретикулярному типу. Их аксоны поднимаются в кору и контактируют со всеми слоями коры, образуя не локальные, а диффузные связи. К неспе­цифическим ядрам поступают связи из ретикулярной формации ствола мозга, гипоталамуса, лимбической системы, базальных ган­глиев, специфических ядер таламуса.

Возбуждение неспецифических ядер вызывает генерацию в коре специфической веретенообразной электрической активности, свиде­тельствующей о развитии сонного состояния. Нарушение функций неспецифических ядер затрудняет появление веретенообразной ак­тивности, т.е. развитие сонного состояния.

Сложное строение таламуса, наличие здесь взаимосвязанных спе­цифических, неспецифических и ассоциативных ядер, позволяет ему организовывать такие двигательные реакции, как сосание, жевание, глотание, смех. Двигательные реакции интегрируются в таламусе с вегетативными процессами, обеспечивающими эти движения.

Функции гипоталамуса

text_fields

text_fields

arrow_upward

Гипоталамус (подбугорье) - структура промежуточного мозга, организующая эмоциональные, поведенчес­кие, гомеостатические реакции организма.

Функционально ядра гипоталамуса делят на переднюю, среднюю и заднюю группы ядер. Окончательно созревает гипоталамус к 13-14 годам, когда заканчивается формирование гипоталамо-гипофизарных нейросекреторных связей. Мощные афферентные связи гипоталамуса с обонятельным мозгом, базальными ганглиями, таламусом, гиппокампом, орбитальной, височной и теменной корой определяют его ин­формативность о состоянии практически всех структур мозга. В то же время гипоталамус посылает информацию к таламусу, ретикулярной формации, вегетативным центрам ствола и спинного мозга.

Нейроны гипоталамуса имеют особенности, которые определяют специфику функций самого гипоталамуса. К этим особенностям относятся: чувствительность нейронов к составу омывающей их кро­ви, отсутствие гематоэнцефалического барьера между нейронами и кровью, способность нейронов к нейросекреиии пептидов, нейромедиаторов и др.

Влияние на симпатическую и парасимпатическую регуляцию по­зволяет гипоталамусу воздействовать на вегетативные функции ор­ганизма гуморальным и нервным путями.

Возбуждение ядер передней группы гипоталамуса приводит к ре­акции организма, его систем по парасимпатическому типу, т.е. ре­акциям, направленным на восстановление и сохранение резервов организма.

Возбуждение ядер задней группы вызывает симпатические эффекты в работе органов:

      • происходит расширение зрачков,
      • повы­шается кровяное давление,
      • учащается ритм сердечных сокращений,
      • тормозится перистальтика желудка и т.д.

Стимуляция ядер средней группы гипоталамуса приводит к снижению влияний симпатической системы. Указанное распределение функций гипоталамуса не абсо­лютно: все структуры гипоталамуса способны, но в разной степени, вызывать симпатические и парасимпатические эффекты. Следова­тельно, между структурами гипоталамуса существуют функциональ­ные взаимодополняющие, взаимокомпенсируюшие отношения.

В целом, за счет большого количества входных и выходных свя­зей, полифункциональности структур, гипоталамус выполняет ин­тегрирующую функцию вегетативной, соматической и эндокринной регуляции, что проявляется и в организации его ядрами ряда кон­кретных функций.

Так, в гипоталамусе располагаются центры :

      • гомеостаза,
      • теплорегуляции,
      • голода и насыщения,
      • жажды и ее удовле­ творения,
      • полового поведения,
      • страха, ярости,
      • регуляции цикла «бодрствование-сон».

Все эти центры реализуют свои функции путем активации или торможения вегетативной нервной системы, эндо­кринной системы, структур ствола и переднего мозга.

Нейроны передней группы ядер гипоталамуса продуцируют так называемые рилизинг-факторы (либерины) и ингибируюшие факто­ры (статины), которые регулируют активность передней доли гипо­физа - аденогипофиз.

Нейроны срединной группы ядер гипоталамуса обладают детекти­рующей функцией, они реагируют на изменение температуры крови, электромагнитный состав и осмотическое давление плазмы, количе­ство и состав гормонов крови.

Терморегуляция со стороны гипоталамуса проявляется в изменении теплопродукции или теплоотдачи организмом. Возбуждение задних ядер сопровождается усилением обменных процессов, увеличением частоты сердечных сокращений, дрожанием мышц туловища, что приводит к росту теплопродукции в организме.

Раздражение перед­ них ядер гипоталамуса

      • расширяет сосуды,
      • усиливает дыхание, пото­отделение - т.е. организм активно теряет тепло.

Пищевое поведение в форме поиска пищи, слюноотделения, уси­ления кровообращения и моторики кишечника наблюдается при стимуляции ядер заднего гипоталамуса. Повреждение других ядер вызывает голодание (афагия) или чрезмерное потребление пищи (гиперфагия), и, как следствие - ожирение.

В гипоталамусе расположен центр насыщения, чувствительный к составу крови - по мере поедания пищи и ее усвоения, нейроны этого центра тормозят активность нейронов центра голода.

Исследования во время хирургических операций показали, что у человека раздражение ядер гипоталамуса вызывает эйфорию, эроти­ческие переживания. В клинике отмечено также, что патологические процессы в области гипоталамуса сопровождаются ускорением поло­вого созревания, нарушением менструального цикла, половой спо­собности.

    • адренокортикотропный гормон - АКТГ, который стимулирует работу же­лез надпочечников;
    • тиреотропный гормон - стимулирует рост и секрецию щитовидной железы;
    • гонадотропный гормон - регулирует активность половых желез;
    • соматотропный гормон - обеспечивает развитие костной системы; пролактин - стимулирует рост и актив­ность молочных желез и др.
  • В гипоталамусе и гипофизе образуются также нейрорегуляторные энкефалины, эндорфины, обладающие морфиноподобным действием и способствующие снижению стресса.

    Развитие психиатрии и неврологии в современных условиях невозможно без глубоких знаний строения и функций мозга. Без понимания процессов, происходящих в этом органе, нельзя эффективно лечить болезни и возвращать людей к полноценной жизни. Нарушения на каком-либо этапе эмбриогенеза - генетические аномалии или расстройства, вследствие тератогенных влияний внешних факторов, - приводят к развитию органических патологий и непоправимым последствиям.

    Важный отдел

    Головной мозг - сложная структура организма. Он включает в себя различные элементы. Одним из важнейших отделов считается промежуточный. Он включает в себя несколько звеньев: таламус, гипоталамус, эпиталамус и мететаламус. Самыми основными считаются первые два.

    Таламус: физиология

    Этот элемент представлен как срединное симметричное образование. Оно расположено между средним мозгом и корой. Состоит элемент из 2-х отделов. Таламус - это образование, входящее в лимбическую систему. Он выполняет различные задачи. В период эмбрионального развития этот элемент считается самым крупным. Он фиксируется в так называемом переднем отделе, рядом с центром мозга. От него в кору во всех направлениях отходят нервные волокна. Медиальная поверхность формирует боковую стенку в третьем желудочке.

    Ядра

    Таламус - это часть сложного комплекса. Он сформирован из четырех частей. К ним относят: гипоталамус, эпиталамус, предталамус, а также дорсальный таламус. Последние два являются производными от промежуточной структуры. Эпиталамус состоит из шишковидного тала, треугольника и поводков. В этом участке располагаются ядра, задействованные в активации обоняния. Онтогенетическая природа эпиталамуса и периталамуса различна. В этой связи они рассматриваются как отдельные образования. В целом,включает в себя более 80 ядер.

    Специфика

    Таламус головного мозга включает в себя систему ламелей. Она сформирована миелинизированными волокнами и разделяет разные части образования. Прочие области определяются нейронными группами. К примеру, интраламинарными элементами, перивентрикулярным ядром и так далее. Структура элементов существенно отличается от основной таламической части.

    Классификация

    В каждом центре присутствуют свои ядра. Это обуславливает их значение для человеческого организма. Классификация ядер осуществляется в зависимости от их локализации. Выделяют следующие группы:

    1. Переднюю.
    2. Медиодорсальную.
    3. Средней линии.
    4. Дорсолатеральную.
    5. Вентролатеральную.
    6. Вентральную заднемедиальную.
    7. Заднюю.
    8. Интраламинарную.

    Кроме этого, ядра подразделяют в зависимости от направленности действия нейронов на:

    1. Зрительные.
    2. Осуществляющие обработку тактильных сигналов.
    3. Слуховые.
    4. Регулирующие равновесие.

    Типы центров

    Выделяют релейные, неспецифические и ассоциативные ядра. Последние включают в себя огромное количество срединных и интраламинарных образований. В релейные ядра поступают сигналы, которые впоследствии проецируются в разные участки коры. К ним относят образования, которые передают первичные ощущения (вентрально-заднемедиальное, вентрально-постлатеральное, медиальное и латеральное коленчатые), а также участвующие в обратной связи импульсов мозжечка (боковые вентральные). Ассоциативные ядра большую часть импульсов получают от коры. Они проецируют их обратно для регуляции активности.

    Нервные пути

    Таламус - это образование, связанное с гиппокампом. Взаимодействие осуществляется через специальный тракт, в котором присутствуют свод и сосцевидные тела. К коре таламус подключается таламокортикальными лучами. Также присутствует путь, по которому передается информация о зуде, прикосновениях, температуре. Он проходит в спинном мозге. Здесь присутствует два отдела: вентральный и латеральный. По первому проходят импульсы о боли и температуре, по второму - о давлении и прикосновениях.

    Кровоснабжение

    Оно осуществляется от соединительной задней, нижнебоковых, боковой и средней хориоидальных, а также парамедиальных таламическо-гипоталамических артериальных сосудов. У некоторых людей обнаруживается анатомическая аномалия. Она представлена в виде артерии Першерона. В этом случае от отходит один ствол. Он обеспечивает кровью весь таламус. Это явление достаточно редкое.

    Функции

    За что отвечает таламус ? Это образование исполняет много задач. В целом таламус - это своего рода концентратор информации. Через него происходит ретрансляция между различными подкорковыми участками. Например, каждая чувствительная система, кроме обонятельной, использует таламические ядра, принимающие и передающие сигналы в соответствующие первичные области. Для зрительного участка входящие импульсы от сетчатки посылаются латеральным отделам посредством центра, проецирующего информацию на соответствующую зону коры в затылочном секторе. Особая роль принадлежит таламусу в процессе регуляции бодрствования и сна. Ядра, взаимодействующие с корой, образуют специфические цепи, связаны с сознанием. Активность и возбуждение также регулирует таламус. Повреждения этого образования обычно приводят к коме. Таламус связан с гиппокампом, выполняет определенные задачи при организации памяти. Считается, что его области подключаются к некоторым мезио-височным участкам. За счет этого обеспечивается дифференциация фамильярной и реколлективной памяти. Кроме этого, выдвигаются предположения, что таламус участвует и в нейронных процессах, необходимых при двигательной регуляции.

    Патологии

    Вследствие инсульта может развиться таламический синдром. Он проявляется односторонним жжением (жаром), ноющими ощущениями. Его часто сопровождают перепады настроения. Двусторонняя ишемия таламической области может спровоцировать достаточно серьезные нарушения. К ним, например, относят глазодвигательные расстройства. При закупорке артерии Першерона может произойти двусторонний инфаркт.

    Ретикулярная формация таламуса

    В центральном отделе ствола находится скопление клеток. Они переплетаются огромным числом волокон, отходящих во всех направлениях. Если рассматривать это образование под микроскопом, то оно выглядит как сети. Поэтому оно и было названо ретикулярной формацией. Нейронные волокна отходят к коре и формируют неспецифические пути. С их помощью поддерживается активность во всех участках ЦНС. Под воздействием формации усиливаются рефлексы. В этом скоплении происходит отбор сведений. В вышележащие участки поступает только новая и важная информация. Активность формации всегда находится на высоком уровне, поскольку через нее идут сигналы от всех рецепторов.

    Нейроны

    Они проявляют высокую чувствительность к фармакологическим средствам и гормонам. Такие препараты, как "Резерпин", "Аминазин", "Серпазил" и прочие способны снизить активность формации. В нейронах происходит взаимодействие восходящих и нисходящих сигналов. Импульсы находятся в постоянной циркуляции в цепях. За счет этого поддерживается активность. Она, в свою очередь, необходима для поддержания тонуса нервной системы. В случае разрушения формации, в особенности верхних ее участков, наступает глубокий сон, хотя афферентные сигналы продолжают поступать в кору по другим путям.