Семя состоит из. Смотреть что такое "Семя" в других словарях

Семя – зачаточное растение. Оно развивается из семизачатка. По строению семена двудольных и однодольных растений различаются между собой. У двудольных растений одна из сторон семени выпуклая, другая вогнутая. Снаружи блестящая гладкая семенная кожура. Под ней – зародыш, состоящий из двух семядолей и расположенных между ними корешка, стебелька и почечки.

Семя однодольных снаружи одето околоплодником, который плотно сросся с семенной кожурой. Если семя разрезать, то можно увидеть, что большую часть составляет мучнистый эндосперм, зародыш имеет маленький корешок, стебелек и почечку.

После периода покоя начинается его прорастание. Для прорастания семени необходимы определенные условия. Для семян каждого вида растения эти условия различны. Температуры, при которых могут прорастать различные семена, колеблются от +5 до +40 градусов С. Прорастающее семя активно дышит.

Необходимое условие – наличие воды. На первых этапах, до развития листьев зародыш питается исключительно запасом питательных веществ. Это в основном липиды, белки. Рост собственно зародыша идет за счет деления клеток и увеличения их размеров. Первым видимым признаком прорастания является появление первичного корешка. Он обладает первичным геотропизмом, то есть растет по направлению силы тяжести, укореняя растение в земле.

Порадовав нас на стадии цветения богатейшей палитрой тонов, оттенков, разнообразием форм, вызвав в воображении удивительные образы, растения вступают в следующую стадию развития - формирование семян, которые продолжат жизнь в следующих поколениях.

Можно ли назвать семя органом растения? Оказывается, нет. Даже первая клетка, образовавшаяся в результате слияния ядер пыльцевого зерна и яйцеклетки, - уже новый организм, хотя и зависящий от материнского растения на начальных этапах своего развития.

Строение и свойства семени определяются основными функциями, возложенными на них природой: воспроизведение растений, расселение и переживание неблагоприятных условий. Способность семени оптимально реализовать эти функции зависит как от генетического потенциала родителей, так и от условий, в которых произрастало материнское растение. У агрономов даже есть понятия энергия прорастания семян (способность давать дружные всходы) и всхожесть (доля проросших семян от общего числа посаженных). Эти характеристики говорят о качестве, о “силе” семян.

Семена удивительно разнообразны по внешнему строению, по размерам, по массе, по составу запасных питательных веществ и даже по степени сформированности зародыша к тому моменту, когда они покидают материнское растение. Общим для всех семян является то, что они состоят из семенной кожуры, эндосперма (запаса питательных веществ) и зародыша.

Защиту зародыша обеспечивает семенная кожура. Она непроницаема для воды; такие семена могут долго лежать в почве, прежде чем прорастут. К тому же при созревании семени в его кожуре накапливается абсцизовая кислота, подавляющая метаболические процессы.

У зрелого зародыша стеблеподобная ось несет одну или две семядоли (первые "листья” будущего растения). На концах зародышевой оси расположены верхушечные меристемы корня и побега.

Основная функция эндосперма - питать прорастающий зародыш.

Как и зародыш, эндосперм состоит из живых клеток. Но зачем растению живая запасающая ткань?

Эндосперм не является просто кладовой. Здесь записана программа поступления в прорастающий зародыш питательных веществ: какие соединения нужно выдавать и в каком порядке.

В семенах разных растений эндосперм развит в различной степени. Он составляет основную часть зрелых семян пшеницы, томатов, моркови. А у вишни, гороха, подсолнечника он почти не развит; запасы сосредоточены в самом зародыше, чаще всего - в семядольных листьях (у бобовых).

У орхидей эндосперма нет совсем, да и микроскопический зародыш тоже не содержит запасных веществ.

Чтобы прорасти, семя орхидеи должно попасть в богатую и влажную почву, пронизанную мицелием гриба ризоктонии. С помощью этого симбионта проросток получает все необходимое, пока не станет способен к самостоятельному существованию.

А что растения запасают в семенах? Злаки, например, накапливают в эндосперме крахмал. Его довольно много - 60-70% от сухой массы зерна. Белков в этих семенах всего 10-16%, жиров - 2%. Бобовые растения в основном запасают белки: соя - до 40%, горох, бобы, вика - до 30%, фасоль - 23%. Семена масличных культур содержат много жиров: клещевина - 60%, подсолнечник - 56%, кунжут - 53%, мак - 45%. Разный состав семян подразумевает и разные пути дальнейшего превращения запасов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Вконтакте

Одноклассники

Развитие пыльцевой трубки. Пылинка, попав на рыльце пестика, прорастает. Содержимое пыльцы, одетой интиной, выпячивается через поры в экзине и образует пыльцевую трубку. Скорость роста пыльцевой трубки составляет 35 мм/час

Ядро клетки и генеративное ядро находятся на растущем конце пыльцевой трубки. Достигнув завязи пыльцевая трубка направляется к семязачатку и проникает в него через микропиле. Оболочка зародышевого мешка растворяется при соприкосновении с кончиком пыльцевой трубки. В зародышевом мешке пыльцевая трубка растет по направлению к яйцеклетке. Оболочка на кончике пыльцевой трубки разрывается и оттуда выходят два спермия. Один сливается с яйцеклеткой, а другой – с вторичным ядром зародышевого мешка или с одним из центральных ядер. Происходит двойное оплодотворение – характерная особенность покрытосеменных растений, не встречающаяся у голосеменных. Двойное оплодотворение открыл в 1898 г. Русский ботаник С. Г. Навашин.

Впоследствии из оплодотворенной яйцеклетки развивается зародыш, а из канальцевой клетки с оплодотворенным вторичным ядром – эндосперм. Эндосперм покрытосеменных триплоиден, что является принципиальным различием между покрытосеменными и голосеменными.

По форме спермии различны: палочковидные, червеобразные, способные к передвижению, несмотря на отсутствие жгутиков..

Формирование зародыша. Оплодотворенная яйцеклетка переходит в состояние покоя, зависящее от времени и внешних условий. Первое деление сопровождается заложением поперечной перегородки. Из терминальной клетки развивается зародыш, а из базальной клетки в дальнейшем образуется конус нарастания побега и семядоли. Первичный корень возникает из самой нижней клетки подвеска. У двудольных зародыш имеет две семядоли, подсемядольное колено, первичный корень, конус нарастания первичного побега (иногда формируется зачаточные листочки или зачаточные почечки).

Формирование эндосперма.

Из чего состоит зародыш семени растения? Строение зародыша семени

Эндосперм служит основным источником питательных веществ

У орхидных развитие эндосперма подавлено. Триплоидное ядро отмирает немедленно или через несколько делений.

Семязачаток превращается в семя. Кожура образуется из интегументов, отчасти из нуцеллюса, Стенка завязи образует околоплодник, окружающий семена, развивающиеся в завязи. Вся завязь превращается в плод.

СЕМЯ

В результате процесса двойного оплодотворения из семязачатка формируется семя. Семя состоит из зародыша и запасных питательных веществ, покрытых семенной кожурой. Зародыш семени развивается из зиготы, образованной в результате слияния спермия с яйцеклеткой. Клетка, возникшая в результате слияния другого спермия с вторичным ядром зародышевого мешка, развивается в питательную ткань семени - эндосперм. Синергиды и антиподы обычно дегенерируют и растворяются, интегументы превращаются в кожуру семени, а нуцеллус у большинства

Рис. 117. Семена покрытосеменных. А-с эндоспермом, который окружает зародыш (мак); Б - с эндоспермом, который лежит рядом с зародышем (пшеница мягкая); В - с запасными веществами, отложенными в семядолях зародыша (горох); Г - с эндо-спермом, окружающим зародыш, и мощным периспермом (черный перец); Д - с пери-спермом, окруженным зародышем (куколь);

/ - семенная кожура, 2 - семенная кожура, сросшаяся с перикарпием, 3-перисперм, 4 - эндосперм, 5 — зародыш, 6 - почечка, 7 - корешок, 8 - семядоли

растений потребляется непосредственно в ка-честве питательного вещества при формиро-вании зародыша семени, реже превращается в питательную ткань - перисперм.

Различают четыре типа семян в зависи-мости от того, где откладываются запасные вещества: в эндосперме, в перисперме, в за-родыше, в эндосперме и перисперме (рис. 117).

Рассмотрим детальнее строение семени с эндоспермом на примере зерновки пшеницы, представляющей плод с одним семенем (рис. 118). Снаружи она покрыта довольно тонким пленчатым слоем, который трудно отделить от внутренней части зерновки. Этот слой является околоплодником, срос-шимся с кожурой семени. Внутри располо-жены зародыш и эндосперм. Зародыш име-ет сформированные вегетативные органы бу-дущего растения: зародышевой корешок с корневым чехликом, корневое влагалище - колеоризу, зародышевый стебелек и почечку. В центре почечки хорошо заметен конус на-растания стебля, прикрытый зародышевыми листьями. Верхний зародышевый лист - колеоптиль - служит защитой для молодо-го проростка при прохождении через почву. Часть зародыша, примыкающая к эндоспер-му, называется щитком. Щиток - единствен-ная развитая семядоля, выполняющая здесь функцию поглощения питательных веществ из эндосперма в период прорастания семе-ни. На противоположной щитку стороне сте-белька находится эпибласт - вероятно, ос-таток (рудимент) второй семядоли. Послед-ний у многих злаков отсутствует. Эндосперм в периферической части (под семенной ко-журой) имеет слой однородных клеток, со-держащих алейроновые зерна,- алейроно-вый слой, в центральной части расположе-ны крахмалоносные клетки.

Примером семени с запасными вещества-ми в зародыше может служить семя фасоли (рис. 119). Снаружи оно покрыто довольно толстой семенной кожурой. На узкой вогну-той поверхности семени расположен руб-чик - место прикрепления семени к семя-ножке. Здесь же находится микропиле (се-мявход). Роль его состоит в пропускании во-ды и газов внутрь семени. Непосредственно над микропиле помещается небольшой буго-рок, образованный зародышевым корешком.

Рис 118. Зерновка пшеницы. А- схема продольно-поперечного разреза;

Б-зародыш на продольном разрезе: 1-волоски,2-околоплодник,3-кожура семени,4,5- эндосперм,6-щиток, 7-стебелек,8-почечка, 9листочки, 10-колеоптиль,11-эпибласт,12-корешок, 13-чехлик, 14-колеориза (корневое влагалище).

Семена характеризуются очень важ-ной особенностью: в условиях неблаго-приятных для прорастания они могут значительное время пребывать в состоянии глубокого покоя

С наступлением благоприятных условий (температуры и влажности) семена всасывают воду и при достаточном доступе воздуха начинают прорастать, формируя проросток.

Семя развивается из семязачатка после оплодотворения (в случае апомиксиса — без оплодотворения). Снаружи оно покрыто семенной кожурой, образованной из интегумента и выполняющей защитную функцию. Эндос-перм, возникший из триплоидного ядра, содержит запасные вещества, пи-тающие зародыш при прорастании. У некоторых растений запасающую функцию может выполнять перисперм, образовавшийся из нуцеллуса. Из оп-лодотворенной яйцеклетки развивается зародыш.

Семена многих растений имеют придатки в виде сочных, мясистых, часто окрашенных выростов, богатых питательными веществами. Если эти выросты развиваются из семяножки (пассифлора, бересклет, мускатный орех), их называют присемянниками, или ариллусами, если из интегументов (хохлатка, клещевина) — карункулами, или ариллоидами. Они служат для привлечения животных, участвующих в распространении семян.

Семенная кожура (спермодерма) выполняет защитную функцию. На кожуре есть небольшое отверстие — микропиле, способствующее проникновению первых порций воды в начале набухания, и рубчик — место прикрепления семени к семяножке. Степень развития, твердость семенной кожуры определяются характером околоплодника: при невскрывающихся твердых околоплодниках она тонкая (вишня, дуб, сложноцветные); в противоположных случаях кожура твердая (виноград, калина). У граната — сочная семенная кожура.

Эндосперм возникает из триплоидного ядра, которое после оплодотворения начинает делиться первым. По характеру развития различают три основных типа эндосперма:

  • ядерный (нуклеарный), т. е. сначала образуется большое количество ядер, затем вокруг них формируются оболочки;
  • клеточный (целлюлярный), т. е. каждое деление ядра сопровождается цитокинезом;
  • гелобиалъный (промежуточный), т. е. после первого деления зародышевый мешок делится на две части: микропилярную (большую) и халазальную (маленькую). В них происходит свободное деление ядер, а впослед-ствии возникают клеточные стенки.

В эндосперме запасаются крахмал, масла, белки. В покоящемся семени эндосперм твердый. При прорастании вещества эндосперма гидролизируются под действием ферментов и поглощаются зародышем; 85% покрытосеменных растений имеют эндосперм (магнолиевые, лилейные, пальмы), 15% — не имеют (бобовые).

Перисперм — запасающая ткань, характерная для некоторых растений (перец, кувшинка, звездчатка, свекла) и возникающая из нуцеллуса (2n).

По наличию запасающих тканей выделяют следующие типы семян:

  • с эндоспермом (клещевина, злаки, пасленовые);
  • с эндоспермом и периспермом (перец, кувшинка);
  • с периспермом и без эндосперма (звездчатка, куколь, свекла);
  • без эндосперма и перисперма (бобовые, орхидные).

Зародыш возникает из оплодотворенной яйцеклетки и состоит из меристематических тканей.

Общее строение семян растения и необходимые условия для прорастания

Гетеротрофен часто расчленен. Зародыш представлен осью и семядольными листьями (два — у двудольных, один — у однодольных). Семядоли выполняют выделительную, запасающую, всасывающую функции.

На оси зародыша у некоторых растений формируется почечка с зачатками настоящих листьев. С другой стороны, расположен корешок с корневым чехликом. Часть оси, к которой прикрепляются семядоли, называют семядольным узлом. Ниже семядолей на оси располагается гипокотиль (подсемядольное колено), выше — эпикотиль.

В семени злаков эндосперм занимает значительный объем, т. к. в нем откладываются запасные вещества. Он дифференцирован на два слоя. На-ружный — алейроновый слой, в котором откладываются белки. Он расположен сразу под семенной кожурой. Ближе к центру находятся клетки с крах-мальными зернами.

Зародыш злаков состоит из одной семядоли, зародышевого корешка, зародышевого стебелька и почечки. Единственная семядоля (щиток) прилежит к хорошо развитому эндосперму. В центре почечки хорошо заметен конус нарастания стебля, прикрытый примордиями листьев. Наружный колпачковидный лист, окружающий почечку, называется колеоптилем. Зародышевый корешок окружен специальным многослойным чехлом (колеоризой), которая при прорастании набухает и развивает на поверхности всасывающие волоски. Иногда на стороне, противоположной щитку, образуется чешуевидный вырост — эпибласт. Он расценивается некоторыми учеными как остаток второй семядоли

Социальные кнопки для Joomla



СЕМЯ
зародышевая стадия семенного растения, образующаяся в процессе полового размножения и служащая для расселения. Внутри семени находится зародыш, состоящий из зародышевых корешка, стебелька и одного или двух листьев, или семядолей. Цветковые растения по числу семядолей делятся на двудольные и однодольные. У некоторых видов, например орхидных, отдельные части зародыша не дифференцированы и начинают формироваться из определенных клеток сразу после прорастания. Типичное семя содержит запас питательных веществ для зародыша, которому некоторое время придется расти без света, необходимого для фотосинтеза. Этот запас может занимать большую часть семени, а иногда находится внутри самого зародыша - в его семядолях (например, у гороха или фасоли); тогда они крупные, мясистые и определяют общую форму семени. При прорастании семени они могут выноситься из земли на удлиняющемся стебельке и становятся первыми фотосинтезирующими листьями молодого растения. У однодольных (например, пшеницы и кукурузы) запас пищи - т.н. эндосперм - всегда отделен от зародыша. Размолотый эндосперм зерновых культур представляет собой всем известную муку. У покрытосеменных растений семя развивается из семяпочки - крошечного утолщения на внутренней стенке завязи, т.е. нижней части пестика, расположенного в центре цветка. В завязи может быть от одной до нескольких тысяч семяпочек. В каждой из них находится яйцеклетка. Если в результате опыления ее оплодотворит спермий, проникающий в завязь из пыльцевого зерна, семяпочка развивается в семя. Она растет, а ее оболочка становится плотной и превращается в двуслойную семенную кожуру. Внутренний ее слой бесцветный, слизистый и способен сильно набухать, поглощая воду. Это пригодится позже, когда растущему зародышу придется прорывать семенную кожуру. Наружный слой может быть маслянистым, мягким, пленчатым, жестким, бумажистым и даже деревянистым. На семенной кожуре обычно заметен т.н. рубчик - участок, которым семя соединялось с семяножкой, прикреплявшей его к родительскому организму. Семя - основа существования современного растительного и животного мира. Без семени на планете не было бы хвойной тайги, лиственных лесов, цветущих лугов, степей, хлебных полей, не было бы птиц и муравьев, пчел и бабочек, человека и других млекопитающих. Все это появилось лишь после того, как у растений в ходе эволюции возникли семена, внутри которых жизнь может, никак не заявляя о себе, сохраняться неделями, месяцами и даже на протяжении многих лет. Миниатюрный растительный зародыш в семени способен путешествовать на далекие расстояния; он не привязан к земле корнями, как его родители; не нуждается ни в воде, ни в кислороде; он ждет своего часа, чтобы, попав в подходящее место и дождавшись благоприятных условий, начать развитие, которое называется прорастанием семени.

ТИПЫ СЕМЯН. Кукуруза - однодольное цветковое растение, семя которого находится внутри плода, называемого зерновкой. Как и у всех однодольных, в семени одна семядоля. Основная масса зерновки заполнена эндоспермом - запасом питательных веществ, который используется зародышем растения при прорастании. Сосна - голосеменное растение. На каждой чешуе его женских шишек открыто располагаются два семени. Под кожурой у них находятся эндосперм и зародыш с несколькими семядолями.



ФАСОЛЬ - двудольное цветковое растение, семена которого созревают внутри бобов. Внутри семени эндосперма нет, а весь запас питательных веществ, необходимых для развития зародыша, хранится в двух крупных мясистых семядолях. Снаружи на семени можно различить рубчик и микропиле.
Эволюция семян. Сотни миллионов лет жизнь на Земле обходилась без семян, как обходится без них и сейчас на покрытых водой двух третях поверхности планеты. Жизнь зародилась в море, и первые завоевавшие сушу растения были еще бессемянными, однако лишь появление семян позволило фотосинтезирующим организмам полностью освоить эту новую для них среду обитания.
Первые наземные растения. Среди крупных организмов первую попытку закрепиться на суше предприняли, вероятнее всего, морские макрофиты - водоросли, оказавшиеся на нагреваемых солнцем камнях во время отлива. Они размножались спорами - одноклеточными структурами, рассеиваемыми родительским организмом и способными развиваться в новое растение. Споры водорослей окружены тонкими оболочками, поэтому не переносят высыхания. Под водой такой защиты вполне достаточно. Споры там распространяются течениями, а поскольку температура воды колеблется относительно мало, им нет необходимости подолгу дожидаться благоприятных для прорастания условий. Первые наземные растения тоже размножались спорами, но в их жизненном цикле уже закрепилась обязательная смена поколений. Включенный в нее половой процесс обеспечивал комбинирование наследственных признаков родителей, в результате чего потомство соединяло в себе достоинства каждого из них, становясь крупнее, выносливее, совершеннее по строению. На определенном этапе такая прогрессивная эволюция привела к появлению печеночников, мхов, плаунов, папоротников и хвощей, уже полностью вышедших из водоемов на сушу. Однако споровое размножение еще не позволяло им распространиться за пределы болотистых мест с влажным и теплым воздухом.
Споровые растения каменноугольного периода. На этом этапе развития Земли (примерно 250 млн. лет назад) среди папоротниковидных и плауновидных появились гигантские формы с частично одревесневающими стволами. Не уступали им по размеру и хвощевидные, полые стебли которых были покрыты зеленой корой, пропитанной кремнеземом. Повсюду, где появлялись растения, за ними следовали и животные, осваивающие новые для себя типы местообитаний. Во влажном полумраке каменноугольных джунглей водилось множество крупных насекомых (до 30 см в длину), гигантских многоножек, пауков и скорпионов, земноводных, похожих на огромных крокодилов, и саламандр. Встречались стрекозы с размахом крыльев 74 см и тараканы длиной 10 см. Древовидные папоротники, плауны и хвощи обладали всеми качествами, необходимыми для обитания на суше, кроме одного - они не образовывали семян. Их корни эффективно всасывали воду и минеральные соли, сосудистая система стволов надежно разносила по всем органам необходимые для жизни вещества, листья активно синтезировали органические вещества. Даже споры усовершенствовались и приобрели прочную целлюлозную оболочку. Не боясь высыхания, они разноситься ветром на значительные расстояния и могли прорастать не сразу, а после определенного периода покоя (т.н. покоящимиеся споры). Однако даже самая совершенная спора - это одноклеточное образование; в противоположность семенам, она быстро высыхает и не содержит запаса питательных веществ, а потому не способна долго ждать благоприятных для развития условий. И все же формирование покоящихся спор было важной вехой на пути к семенным растениям. Многие миллионы лет климат на нашей планете оставался теплым и влажным, но эволюция в плодородных дебрях каменноугольных болот не прекращалась. У древовидных споровых растений впервые возникли примитивные формы настоящих семян. Появились семенные папоротники, плауновидные (знаменитые представители рода Lepidodendron - по-гречески это название означает "чешуйчатое дерево") и кордаиты со сплошными деревянистыми стволами. Хотя ископаемых остатков этих живших сотни миллионов лет назад организмов мало, известно, что древовидные семенные папоротники появились еще до каменноугольного периода. Весной 1869 река Скохари-Крик в горах Катскилл (шт. Нью-Йорк) сильно разлилась. Паводок снес мосты, повалил деревья и сильно подмыл берег у деревни Гилбоа. Это происшествие давным-давно позабылось бы, если бы спавшая вода не открыла взору наблюдателей внушительную коллекцию странных пней. Основания их сильно расширялись, как у болотных деревьев, диаметр достигал 1,2 м, а возраст составлял 300 млн. лет. Хорошо сохранились детали строения коры, рядом были разбросаны фрагменты ветвей и листьев. Естественно, все это, включая ил, из которого поднимались пни, было окаменевшим. Геологи датировали ископаемые остатки верхним девоном - периодом, предшествовавшим каменноугольному, и определили, что они соответствуют древовидным папоротникам. На протяжении следующих пятидесяти лет о находке помнили только палеоботаники, а затем деревня Гилбоа преподнесла очередной сюрприз. Вместе с окаменелыми стволами древних папоротников на этот раз были обнаружены их ветви с настоящими семенами. Сейчас эти вымершие деревья относят к роду Eospermatopteris, что переводится как "рассветный семенной папоротник". ("рассветный", поскольку что речь идет о самых ранних на Земле семенных растениях). Легендарный каменноугольный период завершился, когда геологические процессы усложнили рельеф планеты, смяв ее поверхность в складки и расчленив горными хребтами. Низинные болота были погребены под мощным слоем смываемых со склонов осадочных пород. Материки изменили свои очертания, потеснив море и отклонив от прежнего курса океанические течения, местами начали расти ледниковые шапки, а огромные пространства суши покрыл красный песок. Гигантские папоротники, плауны и хвощи вымерли: их споры не были приспособлены к более суровому климату, а попытка перейти к размножению семенами оказалась слишком слабой и неуверенной.
Первые настоящие семенные растения. Каменноугольные леса гибли и засыпались все новыми слоями песка и глины, но некоторые деревья выжили благодаря тому, что сформировали крылатые семена с прочной оболочкой. Такие семена могли распространяться быстрее, дольше, а значит и на более далекие расстояния. Все это повышало их шансы найти благоприятные для прорастания условия или дождаться, когда они наступят. Семенам суждено было революционизировать жизнь на Земле в начале мезозойской эры. К этому времени печальной участи прочей каменноугольной растительности избежали два типа деревьев - саговниковые и гинкговые. Эти группы начали совместно заселять мезозойские континенты. Не встречая конкуренции, они распространились от Гренландии до Антарктики, сделав растительный покров нашей планеты почти однородным. Их крылатые семена путешествовали по горным долинам, перелетали через безжизненные скалы, прорастали на песчаных участках между камней и среди аллювиального гравия. Вероятно, осваивать новые места им помогали мелкие мхи и папоротники, пережившие смену климата на планете на дне оврагов, в тени утесов и по берегам озер. Они удобряли почву своими органическими остатками, готовя ее плодородный слой для поселения более крупных видов. Горные хребты и обширные равнинные участки оставались голыми. Два типа "пионерных" деревьев с крылатыми семенами, расселившись по планете, были привязаны к влажным местам, поскольку их яйцеклетки оплодотворялись жгутиковыми, активно плавающими сперматозоидами, как у мхов и папоротников. Многие споровые растения образуют споры разного размера - крупные мегаспоры, дающие начало женским гаметам, и мелкие микроспоры, при делении которых возникают подвижные сперматозоиды. Чтобы оплодотворить яйцеклетку, им нужно подплыть к ней по воде - при этом вполне достаточно капли дождя и росы. У саговников и гинкго мегаспоры не рассеиваются родительским растением, а остаются на нем, превращаясь в семена, однако сперматозоиды подвижны, поэтому для оплодотворения нужна сырость. Внешнее строение этих растений, особенно их листьев, тоже сближает их с папоротниковидными предками. Сохранение древнего способа оплодотворения плавающими в воде сперматозоидами привело к тому, что несмотря на относительно выносливые семена продолжительная засуха оставалась для этих растений непреодолимой проблемой, и завоевание суши приостановилось. Будущее наземной растительности обеспечили деревья другого типа, росшие среди саговников и гинкго, но утратившие жгутиковые сперматозоиды. Это были сохранившиеся до наших дней араукарии (род Araucaria), хвойные потомки каменноугольных кордаитов. В эру саговников араукарии стали образовывать огромные количества микроскопических пыльцевых зерен, соответствующих микроспорам, но сухих и плотных. Они переносились ветром к мегаспорам, точнее к образовавшимся из них семяпочкам с яйцеклетками, и прорастали пыльцевыми трубками, доставлявшими к женским гаметам неподвижные спермии. Таким образом, в мире появилась пыльца. Отпала необходимость в воде для оплодотворения, и растения поднялись на новую эволюционную ступень. Образование пыльцы привело к колоссальному увеличению количества семян, развивающихся на каждом отдельном дереве, а следовательно, и к быстрому распространению этих растений. У древних араукарий действовал и способ расселения, сохранившийся у современных хвойных, с помощью жестких крылатых семян, легко разносимых ветром. Итак, появились первые хвойные, а со временем и хорошо всем известные виды семейства сосновых. У сосны образуется два типа шишек. Мужские длиной ок. 2,5 см и диаметром 6 мм группируются у концов самых верхних ветвей, часто пучками по десятку и более, так что у крупного дерева их может быть несколько тысяч. Они рассеивают пыльцу, осыпающую все вокруг желтым порошком. Женские шишки крупнее и растут на дереве ниже мужских. Каждая их чешуя по форме напоминает совок - широкая снаружи и сужающаяся к основанию, которым она прикреплена к деревянистой оси шишки. На верхней стороне чешуи ближе к этой оси открыто располагаются две мегаспоры, дожидающиеся опыления и оплодотворения. Разносимые ветром пыльцевые зерна залетают внутрь женских шишек, скатываются по чешуям к семяпочкам и вступают с ними в контакт, необходимый для оплодотворения. Саговники и гинкго не выдержали конкуренции с более прогрессивными хвойными, которые, эффективно рассеивая пыльцу и крылатые семена, не только потеснили их, но и освоили новые, недоступные прежде уголки суши. Первыми хвойными доминантами стали таксодиевые (сейчас к ним относятся, в частности, секвойи и болотные кипарисы). Распространившись по всему миру, эти красивые деревья в последний раз покрыли все части света однородной растительностью: их остатки находят в Европе, Северной Америке, Сибири, Китае, Гренландии, на Аляске и в Японии.
Цветковые растения и их семена. Хвойные, саговниковые и гинкговые относятся к т.н. голосеменным растениям. Это значит, что их семяпочки расположены открыто на семенных чешуях. Цветковые растения составляют отдел покрытосеменных: их семяпочки и развивающиеся из них семена скрыты от внешней среды в расширенном основании пестика, называемом завязью. В результате пыльцевое зерно не может достичь непосредственно семяпочки. Для слияния гамет и развития семени необходима совершенно новая растительная структура - цветок. Его мужская часть представлена тычинками, женская - пестиками. Они могут находиться в одном и том же цветке или в разных цветках, даже на разных растениях, которые в последнем случае называются двудомными. К двудомным видам относятся, например, ясени, падубы, тополя, ивы, финиковые пальмы. Чтобы произошло оплодотворение, пыльцевое зерно должно попасть на вершину пестика - липкое, иногда перистое рыльце - и приклеиться к нему. Рыльце выделяет химические вещества, под действием которых пыльцевое зерно прорастает: живая протоплазма, выходя из-под его твердой оболочки, образует длинную пыльцевую трубку, проникающую в рыльце, распространяющуюся дальше вглубь пестика по его вытянутой части (столбику) и достигающую в конечном итоге завязи с семяпочками. Под влиянием химических аттрактантов ядро мужской гаметы движется по пыльцевой трубке к семяпочке, проникает в нее через крохотное отверстие (микропиле) и сливается с ядром яйцеклетки. Так происходит оплодотворение. После этого начинает развиваться семя - во влажной среде, обильно снабжаемое питательными веществами, защищенное стенками завязи от внешних воздействий. Параллельные эволюционные преобразования известны и в животном мире: наружное оплодотворение, типичное, скажем, для рыб, на суше сменяется внутренним, а зародыш млекопитающих формируется не в отложенных во внешнюю среду яйцах, как, например, у типичных пресмыкающихся, а внутри матки. Изоляция развивающегося семени от посторонних воздействий позволила цветковым смело "экспериментировать" с его формой и строением, а это в свою очередь привело к лавинообразному появлению новых форм наземных растений, разнообразие которых стало возрастать невиданными в прежние эпохи темпами. Контраст с голосеменными очевиден. Их "голые", лежащие на поверхности чешуй семена независимо от вида растения примерно одинаковы: каплевидные, покрытые твердой кожурой, к которой иногда прикреплено плоское крылышко, образованное окружающими семя клетками. Неудивительно, что на протяжении многих миллионов лет форма голосеменных оставалась весьма консервативной: сосны, ели, пихты, кедры, тиссы, кипарисы очень похожи друг на друга. Правда, у можжевельников, тиссовых и гинкго семена можно спутать с ягодами, но это не меняет общей картины - крайнего однообразия общего плана строения голосеменных, величины, типа и окраски их семян в сравнении с огромным богатством форм цветковых. Несмотря на скудость сведений о первых этапах эволюции покрытосеменных, считается, что они появились к концу мезозойской эры, завершившейся примерно 65 млн. лет назад, а в начале кайнозойской эры уже завоевали мир. Древнейший известный науке цветковый род - Claytonia. Его ископаемые остатки найдены в Гренландии и на Сардинии, т.е., вполне вероятно, что еще 155 млн. лет назад он был распространен так же широко, как саговниковые. Листья у Claytonia пальчато-сложные, как у нынешних конских каштанов и люпинов, а плоды ягодоподобные диаметром 0,5 см на конце тонкой плодоножки. Возможно, эти растения были коричневого или зеленого цвета. Яркие краски цветков и плодов покрытосеменных появились позже - параллельно эволюции насекомых и других животных, которых они были призваны привлекать. Ягода у Claytonia четырехсемянная; на ней можно различить нечто, напоминающее остаток рыльца. Помимо крайне редких ископаемых остатков, получить некоторое представление о первых цветковых растениях позволяют необычные современные растения, объединяемые в порядок гнетовых (Gnetales). Один из их представителей - хвойник (род Ephedra), встречающийся, в частности, в пустынях на юго-западе США; внешне он выглядит как несколько безлистных прутьев, отходящих от толстого стволика. Другой род - вельвичия (Welwitschia) растет в пустыне у юго-западного побережья Африки, а третий - гнетум (Gnetum) - низкий кустарник индийских и малайских тропиков. Эти три рода можно считать "живыми ископаемыми", демонстрирующими возможные пути превращения голосеменных растений в покрытосеменные. Шишки хвойника внешне напоминают цветки: их чешуи разделены на две части, напоминающие лепестки. У вельвичии всего два широких лентовидных листа длиной до 3 м, совершенно не похожих на иголки хвойных. Семена гнетума снабжены дополнительной оболочкой, делающей их похожими на костянки покрытосеменных. Известно, что покрытосеменные отличаются от голосеменных и по строению древесины. У гнетовых в ней сочетаются признаки обеих групп.
Распространение семян. Жизнеспособность и разнообразие растительного мира зависят от способности видов к расселению. Родительское растение всю жизнь прикреплено корнями к одному месту, следовательно, его потомству надо найти другое. Эта задача по освоению нового пространства была возложена на семена. Во-первых, пыльца должна попасть на пестик цветка того же вида, т.е. должно произойти опыление. Во-вторых, пыльцевая трубка должна достигнуть семяпочки, где сольются ядра мужской и женской гамет. Наконец, зрелому семени предстоит покинуть родительское растение. Вероятность того, что семя прорастет и всход успешно приживется на новом месте, составляет ничтожную долю процента, поэтому растения вынуждены полагаться на закон больших чисел и рассеивать как можно большее количество семян. Последний параметр в общем обратно пропорционален их шансам на выживание. Сравним для примера кокосовую пальму и орхидеи. У кокосовой пальмы самые крупные в растительном мире семена. Они способны неограниченно долго плавать по океанам, пока волны не выбросят их на мягкий береговой песок, где конкуренция всходов с другими растениями будет гораздо слабее, чем в лесной чаще. В результате шансы прижиться у каждого из них довольно высоки, и одна зрелая пальма без риска для вида приносит обычно всего несколько десятков семян в год. У орхидей, напротив, самые мелкие в мире семена; в тропических лесах они разносятся слабыми воздушными течениями среди высоких крон и прорастают во влажных трещинах коры на ветвях деревьев. Положение осложняется тем, что на этих ветвях им необходимо найти особый вид гриба, без которого прорастание невозможно: мелкие семена орхидей не содержат запасов питательных веществ и на первых стадиях развития всходов получают их от гриба. Неудивительно, что в одном плодике миниатюрной орхидеи несколько тысяч таких семян. Покрытосеменные растения не ограничиваются образованием разнообразных семян в результате оплодотворения: завязи, а иногда и другие части цветков развиваются в уникальные, содержащие семена структуры - плоды. Завязь может стать зеленым бобом, защищающим семена до их созревания, превратиться в прочный кокосовый орех, способный совершать далекие морские путешествия, в сочное яблоко, которое съест в укромном месте животное, использовав мякоть, но не семена. Ягоды и костянки - любимое лакомство птиц: семена этих плодов не перевариваются в их кишечнике и попадают в почву вместе с экскрементами иногда за многие километры от родительского растения. Плоды бывают крылатыми и пушистыми, причем форма повышающих летучесть придатков у них гораздо разнообразнее, чем у сосновых семян. Крылышко плодов ясеня напоминает весло, у ильма оно похоже на поля шляпы, у клена парные плоды - двукрылатки - напоминают парящих птиц, у айланта крылья плода скручены под углом друг к другу, образуя как бы пропеллер. Эти приспособления позволяют цветковым растениям весьма эффективно использовать для распространения семян внешние факторы. Однако некоторые виды на постороннюю помощь не рассчитывают. Так, плоды недотрог представляют собой своего рода катапульты. Аналогичным механизмом пользуются и герани. Внутри их длинного плодика проходит стержень, к которому прикреплены четыре до поры до времени прямые и соединенные вместе створки - сверху они держатся прочно, снизу слабо. При созревании нижние концы створок отрываются от основания, резко скручиваются к вершине стержня и разбрасывают семена. У хорошо известного в Америке кустарника цеанотуса завязь превращается в ягоду, по устройству близкую к бомбе с часовым механизмом. Давление сока внутри так высоко, что после созревания достаточно теплого солнечного луча, чтобы его семена живой шрапнелью разлетелись во все стороны. Коробочки обычных фиалок, подсохнув, лопаются и разбрасывают вокруг себя семена. Плоды гамамелиса действуют по принципу гаубицы: чтобы семена упали подальше, они стреляют ими под большим углом к горизонту. У горца виргинского в том месте, где семена прикреплены к растению, образуется структура типа пружинки, отбрасывающей зрелые семена. У кислицы оболочки плода сначала набухают, а затем трескаются и так резко сжимаются, что семена вылетают наружу через щели. Арцеутобиум крошечный за счет гидравлического давления внутри ягод выталкивает из них семена, как миниатюрные торпеды.

Разнообразно по размерам и форме. Например, тысячи мелких плодов орхидей весят меньше грамма, плоды некоторых пальм – до 8-15 кг.

Продолжительное время может переносить неблагоприятные условия, находиться в состоянии покоя. Зародыш при этом остается живым. Семя, которое может прорасти, называется всхожим . Для прорастания семени необходимы благоприятные условия (температура, влажность, воздух). Семя дышит, поэтому необходим доступ воздуха (кислорода). Во время дыхания выделяется тепло. Проникает вода в семя сквозь пыльцевход.

Семя состоит из зародыша и запаса питательных веществ, покрытых семенной кожурой . Поверхность может быть гладкой, шероховатой, с шипами, ребрами и т. п. Семенная кожица защищает содержимое семени от повреждения, высыхания. На поверхности семени можно заметить рубчик – след от семенной ножки и пыльцевход . Пыльцевход сохраняется в виде небольшого отверстия в кожуре.

Питательные вещества, как правило, находятся в эндосперме. В состав семени входят органические и неорганические соединения. У многих растений во время созревания семени и формирования зародыша эндосперм полностью используется. Тогда запасные вещества откладываются или в первых зародышевых листках или семядолях (картофель, фасоль, горох, тыква), в других частях семени (куколь).

Количество семядолей в семени определило название классов покрытосеменных (Однодольные, Двудольные). Семена двудольных и однодольных растений имеют разное строение.

У семени двудольных есть две семядоли, между которыми находится зародыш. Семядоли содержат питательные вещества. Зародыш состоит из зародышевых корешка, стебля, почки и листиков. При прорастании семядоли выполняют функцию первых листков.

Семя однодольных имеет единую семядолю – щиток . Это тонкая пленочка, расположенная между эндоспермом и зародышем. Вторая семядоля редуцирована. Зародыш занимает незначительную часть семени и имеет зародышевый корешок, стебель, почку и листики. При прорастании семени сквозь щиток происходит всасывание зародышем питательных веществ из эндосперма.

У покрытосеменных семя теряет связь с материнским растением и прорастает в другом месте. Распространение плодов и семян происходит под действием разных внешних факторов или самостоятельно.

Автохория

Автохория (от греч. аутос – сам, хорео – распространяться) – это способность растений (люпин, герань, фиалка, желтая акация) самостоятельно распространять плоды и семена. «Бешеный огурец» при созревании способен с силой выбрасывать семена на много метров.

Анемохория

Анемохория (от греч. анемос – ветер, хорео – распространяться) – это распространение плодов с помощью ветра (одуванчик, осот, береза, клен). Для этого плоды имеют ряд разных приспособлений: крылатые выросты (парашютики, волоски, крыловидные придатки и т. п.), легкие семена. Это позволяет ветру подхватывать семя. Таким образом, плоды высыпаются не все вместе, а постепенно. Это распространенный способ среди растений.

Орнитохория

Орнитохория (от греч. орнис – птица, хорео – распространяться) – распространение семени и плодов с помощью птиц. Птицы могут поедать плоды, но, пройдя через кишечник, семена большинства растений не перевариваются, семя выходит с пометом; или просто перенести их на большие расстояния и потерять. Некоторые птицы могут прятать плоды в тайники, где последние иногда прорастают.

Зоохория

Зоохория (от греч. зоон – животное, хорео – распространяться) – это распространение плодов и семян растений с помощью животных. Животные поедают плоды и выводят семена с пометом, зарывают плоды в землю или делают тайники, о которых забывают или не используют их, переносят цепкие плоды на покровах.

Гидрохория

Гидрохория (от греч. гидро – вода, хорео – распространяться) – распространение плодов и семян с помощью воды. Характерно преимущественно для водных и болотных растений (осока, кувшинки, камыш и т. п.).

Антропохория

Антропохория (от греч. антропос – человек, хорео – распространяться) – это распространение семени и плодов человеком. Человек переносит плоды на одежде, транспорте, вместе с продуктами, товаром. Иногда плоды, таким образом, переносятся даже на другие континенты. Часто такие растения (элодея, амброзия, циклохена и т. п.) на новых местах быстро размножаются, распространяются и наносят большой ущерб, являются сорняками, не имеющими естественных врагов.

Значение плодов и семян

Много плодов или семян человек употребляет в пищу, кормит домашних животных. Из плодов и семян некоторых растений (подсолнух, соя) человек получает масло. В семенах масличных растений содержится от 25 до 80 % масла.

Семена и плоды применяются в медицине (малина, ежевика, калина). Иногда плоды и семена растений (белена черная, дурман, белладонна и т. п.) содержат ядовитые вещества. При их употреблении у человека возникают отравления. Поэтому при употреблении плодов, особенно незнакомых, надо быть осторожными. Из плодов некоторых растений (конопля, мак) изготовляют наркотические вещества. Большинство наркотиков имеет растительное происхождение.

Семя с момента зарождения и до полной спелости, когда оно становится способным дать нормальный росток, проходит ряд сложных превращений из одного состояния в другое, более совершенное, то есть происходит то, что определяется понятием «развитие семени».

Весь этот сложный процесс можно разделить на несколько периодов и фаз, характеризующих отдельные этапы в жизни семян.

Каждой фазе присуще совершенно определенное состояние семени, и поэтому диагностирование фазы должно отличаться предельной четкостью и простотой. Однако сейчас существуют лишь разрозненные описания отдельных фаз, чаще всего по какому-либо одному признаку.

Особенно важна классификация периодов и фаз развития семени. Чтобы построить классификацию того или иного явления, необходимо обобщить накопленный экспериментальный материал и подвести итоги’ исследований и предложить путь дальнейшей разработки данного явления. Естественно, что такая классификация может быть разработана только коллективными усилиями исследователей.

В основу построения классификации периодов и фаз развития семени должен лечь комплекс признаков: морфологических, морфогенетических и биохимических.

Наиболее подробно изучены фазы и разработаны классификации по зерновым культурам. Лучшие классификации по зерновым культурам предложил Н. Н. Кулешов, по бобовым – В. А. Вишневский, по подсолнечнику – В. К. Морозов.

Периоды развития семени

Период развития семени характеризуется каким-либо значительным качественным изменением, а также его длительностью.

Для зерновых культур можно выделить шесть характерных, четко выраженных периодов: образование семени (эмбриональный), формирование , налив , созревание , послеуборочное дозревание , полная спелость . Как мы увидим дальше, все эти периоды в общей форме присущи и всем другим культурам, хотя, естественно, что у каждой культуры будут специфичные отличия в характере периода, в его фазах.

Н. Н. Кулешов разделил процесс развития зерна на три периода (фазы) : формирование , налив и созревание . Последние два периода мы воспринимаем в трактовке Н. Н. Кулешова, а первый период разделяем на два качественно отличных периода: образование семени и его формирование . Кроме того, включаем в единый процесс развития семени период послеуборочного дозревания и период полной спелости .

Все эти периоды кратко можно охарактеризовать следующим образом (на примере пшеницы озимой).

Период образования семени начинается после оплодотворения (с начала постгамной фазы) и продолжается до того момента, когда семя, отделенное от материнского растения, способно дать росток. Это свидетельствует о том, что семя уже образовалось и в дальнейшем наступает период его укрепления, его формирования. Этот эмбриональный период начинается с образования зиготы и заканчивается образованием точки роста зародыша. В таком состоянии зародыш способен в оптимальных условиях дать пусть слабый, но все же жизнеспособный росток.

Этот период продолжается у пшеницы озимой 7–9 дней, у пшеницы яровой мягкой – 7 дней, у твердой яровой – 10 дней, у кукурузы – 10–15 дней и т.д.

Период формирования продолжается до достижения окончательной длины зерна, характерной для данного сорта. К концу периода заканчивается в основном дифференциация зародыша. За это время содержимое зерна превращается из водянистого в молочное (в ткани эндосперма появляются крахмальные зерна), а цвет оболочки – из белого в зеленый (накапливается хлорофилл). Влажность зерна составляет 65–80 %, а сухой вес 1000 зерен достигает 8–12 г. Этот период в развитии зерна характеризуется высоким содержанием воды (особенно свободной) и низким содержанием сухого вещества. Продолжается период 5–8 дней.

Период налива начинается с отложения крахмала в клетках эндосперма и продолжается до тех пор, пока отложение крахмала прекращается. Период характеризуется увеличением ширины и толщины зерна до максимального размера, полным завершением формирования ткани эндосперма, которая сначала имеет консистенцию молочную, затем тестообразную и к концу периода восковую. Вес воды в зерне остается постоянным, но влажность зерна снижается до 38–40 % (благодаря постоянному приросту сухого вещества). Этот период длится в среднем 20–25 дней, но при влажной и прохладной погоде может затянуться до 30 дней, а при сухой и жаркой – сократиться до 15–18 дней и менее.

Период созревания семени начинается с отчленения его от материнского растения, когда прекращается поступление пластических веществ, ферментов и даже воды. В зерне идут процессы полимеризации и подсыхания. Влажность в это время уменьшается до 12–18 %, а иногда и до 8 %. Количество свободной воды резко сокращается, и к концу периода она может полностью исчезнуть.

Такое деление на периоды правильно с точки зрения товарного зерна – последнее созревает и считается пригодным для технического использования, то есть становится сырьем для промышленности.

С точки зрения семеновода, этим периодом развитие семян еще не закончено. Как увидим дальше, наступает новый качественный период, который связан с дальнейшим преобразованием химических веществ и появлением нового и самого главного свойства семян – полной нормальной всхожести . Хотя морфологическое формирование семян заканчивается в третьем периоде, но физиологические процессы протекают и в последующее время, поэтому считаем необходимым процесс семяобразования дополнить пятым периодом – периодом послеуборочного дозревания .

В период послеуборочного дозревания в семенах происходят сложные биохимические преобразования различных химических соединений, хотя морфологические признаки остаются такими же, как и в предыдущей фазе.

В этот период продолжается и заканчивается синтез высокомолекулярных белковых соединений, превращение свободных жирных кислот в жиры, укрупняются молекулы углеводных соединений, идут процессы превращения веществ – ингибиторов прорастания в другие формы, затухает деятельность ферментов, повышается воздухо- и водопроницаемость семенных оболочек.

Влажность семян равновесная с относительной влажностью воздуха. Дыхание семян затухает. В начале периода семена не прорастают или всхожесть у них очень пониженная, в конце становится нормальной. Период продолжается в зависимости от культуры и внешних условий от одного дня до нескольких месяцев.

Период полной спелости начинается с момента наступления полной всхожести семян, то есть семена готовы начать новый цикл в жизни растения. Идет медленное старение коллоидов, которое сопровождается слабым дыханием. В таком состоянии семена находятся до начала прорастания или до полной гибели вследствие старения при длительном хранении.

Указанные периоды в некоторых случаях расчленяют на более мелкие этапы развития семян – фазы . Фазы выделяют по разным признакам, наиболее ярко отражающим их особенность. В одном случае это может быть особое состояние эндосперма, в другом – характер физиологических процессов и т.п.

Период налива делят на следующие фазы развития по состоянию эндосперма: водянистая , предмолочная , молочная , тестообразная . В период созревания выделяют фазы спелости: восковая (часто различают начало, полная и конец восковой спелости), твердая (иногда отмечают начало твердой фазы спелости).

Фаза водянистого состояния – начало формирования клеток эндосперма. Зерно наполняется водянистой жидкостью. Оболочка белая или белесоватая. Влажность зерна 75–80 %, свободной влаги в 5–6 раз больше, чем связанной, сухого вещества 2–3 % от максимального количества. Продолжительность фазы в среднем около 6 дней.

Фаза предмолочная – жидкое, водянистое содержимое зерновки приобретает молочный оттенок, поскольку начинается процесс отложения крахмальных зерен в эндосперме. Оболочка зеленоватая. Влажность зерна снижается до 70–75 %, свободной влаги содержится в 3–4 раза больше, чем связанной, сухого вещества к концу фазы накапливается около 10 % от веса спелой зерновки. Продолжительность фазы 6–7 дней.

Фаза молочной спелости – зерно имеет консистенцию молокообразной белой массы, оболочка зеленая. Влажность зерна к концу фазы опускается до 50 %, отношение свободной воды к связанной примерно 1,5:1. Количество воды в 1000 сырых зерен остается приблизительно на постоянном уровне. В эту фазу интенсивно накапливается сухое вещество, его количество составляет около 50 % от веса зрелого семени. Продолжительность фазы 7–10 дней, иногда 10–15 дней.

Фаза тестообразной спелости – эндосперм приобретает консистенцию теста, при раздавливании тянутся тяжи. В оболочке постепенно исчезает хлорофилл (сохраняясь в бороздке). Влажность зерна снижается до 35–42 %, отношение свободной воды к связанной 1:1. Содержание сухого вещества достигает 85–90 % от максимума. Продолжительность фазы 4–5 дней.

Фаза восковой спелости – эндосперм становится восковидным, упругим. Оболочки желтеют. Исчезает хлорофилл в бороздке. Количество воды снижается до 30 %. Зерно достигает максимального объема. В начале фазы еще продолжается незначительный прирост сухого вещества в зерне, а к концу он полностью прекращается. Продолжительность фазы 3–6 дней.

– эндосперм становится твердым, в изломе мучнистым или стекловидным. Оболочка также приобретает плотный кожистый вид. Окраска типичная для данной культуры и сорта. Воды содержится в зависимости от зоны и условий 8–22 %, в том числе в свободном состоянии 1–8 %. Продолжительность фазы 3–5 дней, а затем начинается постепенный процесс потери вещества (истекание и т.п.).

Длительность каждого периода и фазы обусловлена не только видовыми особенностями, но и теми условиями, в которых протекает развитие семени. Окружающая среда может изменить не только продолжительность периода или фазы, но и их характер (физиологические процессы могут протекать интенсивно, а могут в значительной степени подавляться), что отражается на посевных и урожайных свойствах семян.

Если в период формирования семян стоит жаркая и сухая погода или почва недостаточно влажна, то есть зерно попадает под запал или захват , то продолжительность периода сокращается, семена не успевают достигнуть нормальной длины и получаются укороченными (очень редкое явление).

В некоторых случаях процесс угнетения растения и семени может пойти дальше (при высокой температуре и недостатке влаги): наступает сильное обезвоживание семян, нарушается нормальное физиологическое состояние клеток, изменяются биохимические процессы в семени. В итоге получаются щуплые семена с небольшим весом 1000 зерен, часто с повышенным содержанием азотистых соединений.

Влажная погода с благоприятной температурой, обеспеченность элементами питания способствуют удлинению периода формирования и образования длинных семян, которые при благоприятных последующих условиях превращаются в крупные семена.

От условий в период налива семян зависят полновесность и крупность семян. При нормальных условиях питания, водоснабжения и отсутствии физического иссушения семян процесс налива продолжается более длительное время и в зерне откладывается много органических веществ. Семена в таких условиях приобретают большой вес, крупность, гладкую поверхность, яркую, свежую окраску, они обладают высокими посевными и урожайными свойствами.

В условиях дождливой погоды налив затягивается, синтетические процессы ослабляются, изменяется химический состав, ибо некоторые вещества не превращаются в конечные продукты. Такие семена обладают пониженными урожайными свойствами, имеют длинный послеуборочный период дозревания, плохо хранятся.

Высокая температура при достаточно полном водоснабжении сокращает период налива и ускоряет темп биохимических процессов. Семена получаются высоких качеств. Если же обеспеченность водой недостаточная, то из-за сокращения данного периода семена могут быть в разной степени щуплыми. Однако эта щуплость действует менее отрицательно на качество семян, чем щуплость, возникшая в период их формирования, когда неблагоприятные условия отражаются и на развитии зародыша.

Условия, складывающиеся в период созревания семян, меньше влияют на их качество, чем условия предыдущих периодов, но и они имеют значение для получения высококачественных семян. В этот период должно быть постоянное, равномерное подсыхание семян, что способствует превращению запасных питательных веществ в конечные формы. Засуха в фазе восковой спелости, если она вызывает быстрое высыхание семян, приводит к повышенному содержанию легкоподвижных углеводов (сахара и т.п.), которые не успевают превращаться в крахмал. Такие семена обладают высокими посевными качествами, особенно высокой энергией прорастания, но требуют к себе особого внимания в период хранения. Повышенное содержание сахаров даже при незначительном увеличении влажности может вызвать интенсивное дыхание, а в дальнейшем и порчу семян.

Дождливая и холодная погода в период созревания замедляет этот процесс, а семена получаются с плохими посевными качествами и низкой всхожестью. Холодная, но сухая погода, хотя и вызывает удлинение периода, но семена получаются удовлетворительных качеств.

Рассмотренные периоды развития семян относились к зерновым культурам, но они в полной мере применимы и к другим культурам, хотя некоторые фазы могут быть иными.

В. А. Вишневский детально изучил процесс развития семян люпина и установил шесть фаз спелости: а) семядоли темно-зеленые, корешок зародыша зеленый; б) семядоли зеленые, начало побеления корешка зародыша; в) семядоли светло-зеленые, полное побеление корешка зародыша; г) семядоли беловатые, начале пожелтения корешка зародыша; д) семядоли пожелтевшие, корешок зародыша желтый; е) семядоли желтые, корешок зародыша светло-желтый. По данным автора, период налива оканчивается в фазе полного пожелтения корешка зародыша, когда влажность семян становится ниже 50 % и поступление пластических веществ в семена прекращается. Такое деление на фазы периодов налива и созревания возможно и для других бобовых культур, хотя и будут некоторые отличия.

Процесс развития семянок подсолнечника значительно отличается от процесса развития зерновок. По схеме В. К. Морозова для подсолнечника установлены следующие фазы:

Фаза формирования объема семянки (околоплодника) начинается задолго до цветения и заканчивается через 6–14 дней после оплодотворения. В длину околоплодник семянки растет примерно 6 дней после оплодотворения, а в ширину и толщину – 8–14 дней.

Фаза формирования объема ядра начинается после оплодотворения. Заметный рост во всех трех измерениях начинается после четвертого дня и заканчивается на 12–14-й день.

Фаза налива начинается еще в конце предыдущей, а заканчивается тогда, когда прекращается поступление сухого вещества и накопление жира в семянке. Обычно это происходит при снижении влажности семянок до 38–40 %.

В фазу созревания идет процесс высыхания, удаления влаги. Семена переходят в состояние послеуборочного дозревания.

Внутри фазы созревания автор различает еще степени спелости (созревания): уборочную – семена имеют влажность 18–20 %, хозяйственную – влажность семянок 12–14 % и перестой – влажность семянок меньше 12 %.

Как видим, в основу этого деления процесса развития семянок положена их влажность, и только на первых двух фазах взяты другие признаки.

Можно было бы продолжить разбор фаз развития других культур, но все они будут отражать только их специфику, а общая закономерность остается та же.

Порадовав нас на стадии цветения богатейшей палитрой тонов, оттенков, разнообразием форм, вызвав в воображении удивительные образы, растения вступают в следующую стадию развития — формирование семян, которые продолжат жизнь в следующих поколениях.

Можно ли назвать семя органом растения? Оказывается, нет. Даже первая клетка, образовавшаяся в результате слияния ядер пыльцевого зерна и яйцеклетки, — уже новый организм, хотя и зависящий от материнского растения на начальных этапах своего развития.

Строение и свойства семени определяются основными функциями, возложенными на них природой: воспроизведение растений, расселение и переживание неблагоприятных условий. Способность семени оптимально реализовать эти функции зависит как от генетического потенциала родителей, так и от условий, в которых произрастало материнское растение. У агрономов даже есть понятия энергия прорастания семян (способность давать дружные всходы) и всхожесть (доля проросших семян от общего числа посаженных). Эти характеристики говорят о качестве, о “силе” семян.

Семена удивительно разнообразны по внешнему строению, по размерам, по массе, по составу запасных питательных веществ и даже по степени сформированности зародыша к тому моменту, когда они покидают материнское растение. Общим для всех семян является то, что они состоят из семенной кожуры, эндосперма (запаса питательных веществ) и зародыша.

Защиту зародыша обеспечивает семенная кожура. Она непроницаема для воды; такие семена могут долго лежать в почве, прежде чем прорастут. К тому же при созревании семени в его кожуре накапливается абсцизовая кислота, подавляющая метаболические процессы.

У зрелого зародыша стеблеподобная ось несет одну или две семядоли (первые "листья” будущего растения). На концах зародышевой оси расположены верхушечные меристемы корня и побега.

Основная функция эндосперма — питать прорастающий зародыш.

Как и зародыш, эндосперм состоит из живых клеток. Но зачем растению живая запасающая ткань?

Эндосперм не является просто кладовой. Здесь записана программа поступления в прорастающий зародыш питательных веществ: какие соединения нужно выдавать и в каком порядке.

В семенах разных растений эндосперм развит в различной степени. Он составляет основную часть зрелых семян пшеницы, томатов, моркови. А у вишни, гороха, подсолнечника он почти не развит; запасы сосредоточены в самом зародыше, чаще всего — в семядольных листьях (у бобовых).

У орхидей эндосперма нет совсем, да и микроскопический зародыш тоже не содержит запасных веществ. Чтобы прорасти, семя орхидеи должно попасть в богатую и влажную почву, пронизанную мицелием гриба ризоктонии. С помощью этого симбионта проросток получает все необходимое, пока не станет способен к самостоятельному существованию.

А что растения запасают в семенах? Злаки, например, накапливают в эндосперме крахмал. Его довольно много — 60-70% от сухой массы зерна. Белков в этих семенах всего 10-16%, жиров — 2%. Бобовые растения в основном запасают белки: соя — до 40%, горох, бобы, вика — до 30%, фасоль — 23%. Семена масличных культур содержат много жиров: клещевина — 60%, подсолнечник — 56%, кунжут — 53%, мак — 45%. Разный состав семян подразумевает и разные пути дальнейшего превращения запасов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .