Характеристики резисторов, параметры и маркировка. Маркировка сопротивлений по цветам и буквам

Термину сопротивление в некотором отношении повезло больше, чем другим физическим терминам: мы с раннего детства знакомимся с этим свойством окружающего мира, осваивая среду обитания, особенно когда тянемся к приглянувшейся игрушке в руках другого ребёнка, а он сопротивляется этому. Этот термин нам интуитивно понятен, поэтому в школьные годы во время уроков физики, знакомясь со свойствами электричества, термин электрическое сопротивление не вызывает у нас недоумения и его идея воспринимается достаточно легко.

Число производимых в мире технических реализаций электрического сопротивления - резисторов - не поддаётся исчислению. Достаточно сказать, что в наиболее распространённых современных электронных устройствах - мобильных телефонах, смартфонах, планшетах и компьютерах - число элементов может достигать сотен тысяч. По статистике резисторы составляют свыше 35% элементов электронных схем, а, учитывая масштабы производства подобных устройств в мире, мы получаем умопомрачительную цифру в десятки триллионов единиц. Наравне с другими пассивными радиоэлементами - конденсаторами и катушками индуктивности, резисторы лежат в основе современной цивилизации, являясь одним из китов, на которых покоится наш привычный мир.

Определение

Электрическое сопротивление - это физическая величина, характеризующая некоторые электрические свойства материи препятствовать свободному, без потерь, прохождению электрического тока через неё. В терминах электротехники электрическое сопротивление есть характеристика электрической цепи в целом или её участка препятствовать протеканию тока и равная, при постоянном токе, отношению напряжения на концах цепи к силе тока, протекающего по ней.

Электрическое сопротивление связано с передачей или преобразованием электрической энергии в другие виды энергии. При необратимом преобразовании электрической энергии в тепловую, ведут речь об активном сопротивлении. При обратимом преобразовании электрической энергии в энергию магнитного или электрического поля, если в цепи течет переменный ток, говорят о реактивном сопротивлении. Если в цепи преобладает индуктивность, говорят об индуктивном сопротивлении, если ёмкость - о ёмкостном сопротивлении.

Полное сопротивление (активное и реактивное) для цепей переменного тока описывается понятиям импеданса, а для переменных электромагнитных полей - волновым сопротивлением. Сопротивлением иногда не совсем правильно называют его техническую реализацию - резистор, то есть радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление обозначается буквой R или r и считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

R - сопротивление, Ом;

U - разность электрических потенциалов (напряжение) на концах проводника, В;

I - сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Эта формула называется законом Ома, по имени немецкого физика, открывшего этот закон. Немаловажную роль в расчёте теплового эффекта активного сопротивления играет закон о выделяемой теплоте при прохождении электрического тока через сопротивление - закон Джоуля-Ленца:

Q = I 2 ∙ R ∙ t

Q - количество выделенной теплоты за промежуток времени t, Дж;

I - сила тока, А;

R - сопротивление, Ом;

t - время протекания тока, сек.

Единицы измерения

Основной единицей измерения электрического сопротивления в системе СИ является Ом и его производные: килоом (кОм), мегаом (МОм). Соотношения единиц сопротивления системы СИ с единицами других систем вы можете найти в нашем конвертере единиц измерения.

Историческая справка

Первым исследователем явления электрического сопротивления, а, впоследствии, и автором знаменитого закона электрической цепи, названного затем его именем, стал выдающийся немецкий физик Георг Симон Ом. Опубликованный в 1827 году в одной из его работ, закон Ома сыграл определяющую роль в дальнейшем исследовании электрических явлений. К сожалению, современники не оценили его исследования, как и многие другие его работы в области физики, и, по распоряжению министра образования за опубликование результатов своих исследований в газетах он даже был уволен с должности преподавателя математики в Кёльне. И только в 1841 году, после присвоения ему Лондонским королевским обществом на заседании 30 ноября 1841 г. медали Копли, к нему наконец-то приходит признание. Учитывая заслуги Георга Ома, в 1881 г. на международном конгрессе электриков в Париже было решено назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»).

Физика явления в металлах и её применение

По своим свойствам относительной величины сопротивления, все материалы подразделяются на проводники, полупроводники и изоляторы. Отдельным классом выступают материалы, имеющие нулевое или близкое к таковому сопротивление, так называемые сверхпроводники. Наиболее характерными представителями проводников являются металлы, хотя и у них сопротивление может меняться в широких пределах, в зависимости от свойств кристаллической решётки.

По современным представлениям, атомы металлов объединяются в кристаллическую решётку, при этом из валентных электронов атомов металла образуется так называемый «электронный газ».

Относительно малое сопротивление металлов связано именно с тем обстоятельством, что в них имеется большое количество носителей тока - электронов проводимости - принадлежащих всему ансамблю атомов данного образца металла. Возникающий при приложении внешнего электрического поля, ток в металле представляет собой упорядоченное движение электронов. Под действием поля электроны ускоряются и приобретают определённый импульс, а затем сталкиваются с ионами решётки. При таких столкновениях, электроны изменяют импульс, частично теряя энергию своего движения, которая преобразуется во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Необходимо заметить, что сопротивление образца металла или сплавов металлов данного состава зависит от его геометрии, и не зависит от направления приложенного внешнего электрического поля.

Дальнейшее приложение всё более сильного внешнего электрического поля приводит к нарастанию тока через металл и выделению всё большего количества тепла, которое, в конечном итоге, может привести к расплавлению образца. Это свойство применяется в проволочных предохранителях электрических цепей. Если температура превысила определенную норму, то проволока расплавляется, и прерывает электрическую цепь - по ней больше не может течь ток. Температурную норму обеспечивают, выбирая материал для проволоки по его температуре плавления. Прекрасный пример того, что происходит с предохранителями, даёт опыт съёмки перегорания нити накала в обычной лампе накаливания.

Наиболее типичным применением электрического сопротивления является применение его в качестве тепловыделяющего элемента. Мы пользуемся этим свойством при готовке и подогреве пищи на электроплитках, выпекании хлеба и тортов в электропечах, а также при работе с электрочайниками, кофеварками, стиральными машинами и электроутюгами. И совершенно не задумываемся, что своему комфорту в повседневной жизни мы опять же должны быть благодарны электрическому сопротивлению: включаем ли бойлер для душа, или электрический камин, или кондиционер в режим подогрева воздуха в помещении - во всех этих устройствах обязательно присутствует нагревательный элемент на основе электрического сопротивления.

В промышленном применении электрическое сопротивление обеспечивает приготовление пищевых полуфабрикатов (сушка), проведение химических реакций при оптимальной температуре для получения лекарственных форм и даже при изготовлении совершенно прозаических вещей, вроде полиэтиленовых пакетов различного назначения, а также при производстве изделий из пластмасс (процесс экструдирования).

Физика явления в полупроводниках и её применение

В полупроводниках, в отличие от металлов, кристаллическая структура образуется за счёт ковалентных связей между атомами полупроводника и поэтому, в отличие от металлов, в чистом виде они имеют значительно более высокое электрическое сопротивление. Причем, если говорят о полупроводниках, обычно упоминают не сопротивление, а собственную проводимость.

Привнесение в полупроводник примесей атомов с большим числом электронов на внешней оболочке, создаёт донорную проводимость n-типа. При этом «лишние» электроны становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление понижается. Аналогично привнесение в полупроводник примесей атомов с меньшим числом электронов на внешней оболочке, создаёт акцепторную проводимость р-типа. При этом «недостающие» электроны, называемые «дырками», становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление также понижается.

Наиболее интересен случай соединения областей полупроводника с различными типами проводимости, так называемый p-n переход. Такой переход обладает уникальным свойством анизотропии - его сопротивление зависит от направления приложенного внешнего электрического поля. При включении «запирающего» напряжения, пограничный слой p-n перехода обедняется носителями проводимости и его сопротивление резко возрастает. При подаче «открывающего» напряжения в пограничном слое происходит рекомбинация носителей проводимости в пограничном слое и сопротивление p-n перехода резко понижается.

На этом принципе построены важнейшие элементы электронной аппаратуры - выпрямительные диоды. К сожалению, при превышении определённого тока через p-n переход, происходит так называемый тепловой пробой, при котором как донорные, так и акцепторные примеси перемещаются через p-n переход, тем самым разрушая его, и прибор выходит из строя.

Главный вывод о сопротивлении p-n переходов заключается в том, что их сопротивление зависит от направления приложенного электрического поля и носит нелинейный характер, то есть не подчиняется закону Ома.

Несколько иной характер носят процессы, происходящие в МОП-транзисторах (Металл-Окисел-Полупроводник). В них сопротивлением канала исток-сток управляет электрическое поле соответствующей полярности для каналов p- и n-типов, создаваемое затвором. МОП-транзисторы почти исключительно используются в режиме ключа - «открыт-закрыт» - и составляют подавляющее число электронных компонентов современной цифровой техники.

Вне зависимости от исполнения, все транзисторы по своей физической сути представляют собой, в известных пределах, безынерционные управляемые электрические сопротивления.

Физика явления в газах и её применение

В обычном состоянии газы являются отличными диэлектриками, поскольку в них имеется очень малое число носителей заряда - положительных ионов и электронов. Это свойство газов используется в контактных выключателях, воздушных линиях электропередач и в воздушных конденсаторах, так как воздух представляет собой смесь газов и его электрическое сопротивление очень велико.

Так как газ имеет ионно-электронную проводимость, при приложении внешнего электрического поля сопротивление газов вначале медленно падает из-за ионизации всё большего числа молекул. При дальнейшем увеличении напряжения внешнего поля возникает тлеющий разряд и сопротивление переходит на более крутую зависимость от напряжения. Это свойство газов использовалась ранее в газонаполненных лампах - стабисторах - для стабилизации постоянного напряжения в широком диапазоне токов. При дальнейшем росте приложенного напряжения, разряд в газе переходит в коронный разряд с дальнейшим снижением сопротивления, а затем и в искровой - возникает маленькая молния, а сопротивление газа в канале молнии падает до минимума.

Основным компонентом радиометра-дозиметра Терра-П является счетчик Гейгера-Мюллера . Его работа основана на ударной ионизации находящегося в нем газа при попадании гамма-кванта, в результате которой резко снижается его сопротивление, что и регистрируется.

Свойство газов светиться при протекании через них тока в режиме тлеющего разряда используется для оформления неоновых реклам, индикации переменного поля и в натриевых лампах. То же свойство, только при свечении паров ртути в ультрафиолетовой части спектра, обеспечивает работу и энергосберегающих ламп. В них световой поток видимого спектра получается в результате преобразования ультрафиолетового излучения флуоресцентным люминофором, которым покрыты колбы ламп. Сопротивление газов точно так же, как и в полупроводниках, носит нелинейный характер зависимости от приложенного внешнего поля и так же не подчиняется закону Ома.

Физика явления в электролитах и её применение

Сопротивление проводящих жидкостей - электролитов - определяется наличием и концентрацией ионов различных знаков - атомов или молекул, потерявших или присоединивших электроны. Такие ионы при недостатке электронов называются катионами, при избытке электронов - анионами. При приложении внешнего электрического поля (помещении в электролит электродов с разностью потенциалов) катионы и анионы приходят в движение; физика процесса заключается в разрядке или зарядке ионов на соответствующем электроде. При этом на аноде анионы отдают излишние электроны, а на катоде катионы получают недостающие.

Существенным отличием электролитов от металлов, полупроводников и газов является перемещение вещества в электролитах. Это свойство широко используется в современной технике и медицине - от очистки металлов от примесей (рафинирование) до внедрения лекарственных средств в больную область (электрофорез). Сверкающей сантехнике наших ванн и кухонь мы обязаны процессам гальваностегии – никелированию и хромированию. Излишне вспоминать, что качество покрытия достигается именно благодаря управлению сопротивлением раствора и его температурой, а также многими другими параметрами процесса осаждения металла.

Поскольку человеческое тело с точки зрения физики представляет собой электролит, применительно к вопросам безопасности существенную роль играет знание о сопротивлении тела человека протеканию электрического тока. Хотя типичное значение сопротивления кожи составляет около 50 кОм (слабый электролит), оно может варьироваться в зависимости от психоэмоционального состояния конкретного человека и условий окружающей среды, а также площади контакта кожи с проводником электрического тока. При стрессе и волнении или при нахождении в некомфортных условиях оно может значительно снижаться, поэтому для расчётов сопротивления человека в технике безопасности принято значение 1 кОм.

Любопытно, что на основе измерения сопротивления различных участков кожи человека, основан метод работы полиграфа - «детектора» лжи, который, наряду с оценкой многих физиологических параметров, определяет, в частности, отклонение сопротивления от текущих значений при задавании испытуемому «неудобных» вопросов. Правда этот метод ограниченно применим: он даёт неадекватные результаты при применении к людям с неустойчивой психикой, к специально обученным агентам или к людям с аномально высоким сопротивлением кожи.

В известных пределах к току в электролитах применим закон Ома, однако, при превышении внешнего прилагаемого электрического поля некоторых характерных для данного электролита значений, его сопротивление также носит нелинейный характер.

Физика явления в диэлектриках и её применение

Сопротивление диэлектриков весьма высоко, и это качество широко используется в физике и технике при применении их в качестве изоляторов. Идеальным диэлектриком является вакуум и, казалось бы, о каком сопротивлении в вакууме может идти речь? Однако, благодаря одной из работ Альберта Эйнштейна о работе выхода электронов из металлов, которая незаслуженно обойдена вниманием журналистов, в отличие от его статей по теории относительности, человечество получило доступ к технической реализации огромного класса электронных приборов, ознаменовавших зарю радиоэлектроники, и по сей день исправно служащих людям.

Согласно Эйнштейну, любой проводящий материал окружён облаком электронов, и эти электроны, при приложении внешнего электрического поля, образуют электронный луч. Вакуумные двухэлектродные приборы обладают различным сопротивлением при смене полярности приложенного напряжения. Раньше они использовались для выпрямления переменного тока. Трёх- и более электродные лампы использовались для усиления сигналов. Теперь они вытеснены более выгодными с энергетической точки зрения транзисторами.

Однако осталась область применения, где приборы на основе электронного луча совершенно незаменимы - это рентгеновские трубки, применяемые в радиолокационных станциях магнетроны и другие электровакуумные приборы. Инженеры и по сей день всматриваются в экраны осциллографов с электронно-лучевыми трубками, определяя характер происходящих физических процессов, доктора не могут обойтись без рентгеновских снимков, и все мы ежедневно пользуемся микроволновыми печами, в которых стоят СВЧ-излучатели - магнетроны.

Поскольку характер проводимости в вакууме носит только электронный характер, сопротивление большинства электровакуумных приборов подчиняется закону Ома.

Резисторы: их назначение, применение и измерение

Резистор - электронный прибор, необходимый во всех электронных схемах. По статистике, 35% любой радиосхемы составляют именно резисторы. Конечно, можно попытаться выдумать схему без резисторов, но это будут лишь игры разума. Практические электрические и электронные схемы без резисторов немыслимы. С точки зрения инженера-электрика любой прибор, обладающий сопротивлением, может называться резистором вне зависимости от его внутреннего устройства и способа изготовления. Ярким примером тому служит история с крушением дирижабля «Италия» полярного исследователя Нобиле. Радисту экспедиции удалось отремонтировать радиостанцию и подать сигнал бедствия, заменив сломанный резистор грифелем карандаша, что, в конечном итоге, и спасло экспедицию.

Резисторы являются элементами электронной аппаратуры и могут применяться в качестве дискретных компонентов или составных частей интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду вольтамперной характеристики, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологиям изготовления и рассеиваемой тепловой энергии. Обозначение резистора в схемах приведено на рисунке ниже:

Резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов общее сопротивление цепи равно сумме сопротивлений всех резисторов:

R = R 1 + R 2 + … + R n

При параллельном соединении резисторов их общее сопротивление цепи равно

R = R 1 ∙ R 2 ∙ … ∙ R n /(R 1 + R 2 + … + R n)

По назначению резисторы делятся на:

  • резисторы общего назначения;
  • резисторы специального назначения.

По характеру изменения сопротивления резисторы делятся на:

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

Цветовая маркировка резисторов

В зависимости от габаритов и назначения резисторов, для обозначения их номиналов применяются цифро-символьная маркировка или маркировка цветными полосками для резисторов навесного или печатного монтажа. Символ в маркировке может играть роль запятой в обозначении номинала: для обозначения Ом применяются символы R и E, для килоом - символ К, для мегаом - символ М. Например: 3R3 означает номинал в 3,3 Ом, 33Е = 33 Ом, 4К7 = 4,7 кОм, М56 = 560 кОм, 1М0 = 1,0 Мом.

Наиболее универсальным и практичным методом определения номинала резистора и его исправности является непосредственное измерение его сопротивления измерительным прибором. Однако при измерении непосредственно в схеме следует помнить, что ее питание должно быть отключено и что измерение будет неточным.

Резистор - пассивный элемент электрической цепи, имеющий единственную характеристику-сопротивление. Само название резистора произошло от латинского resisto- «сопротивляюсь». Поэтому, резистор часто называют просто сопротивлением. Из статьи вы сможете узнать немного полезной теории о сопротивлении, научитесь понимать маркировку резисторов, в том числе цветовую.

Перед прочтением статьи вы можете сразу заказать набор из 600 штук наиболее востребованных резисторов (30 номиналов по 20 штук каждого) по ссылке или хороший расширенный набор из 820 резисторов (41 номинал по 20 штук каждого) здесь

Что такое сопротивление

Электрический ток, текущий по проводам, испытывает сопротивление. Это сопротивление меняется в зависимости от внешних условий и свойств проводника. Чем тоньше провод-тем больше сопротивление. Чем длиннее провод-тем больше сопротивление. Если вы уже прошли десять километров, то идти становится тяжелее, чем в начале пути. Это сравнение не совсем правильное с точки зрения физики, но позволяет представить вышеописанные свойства проводников.

Резисторы россыпью. В основном, советские.

Величина сопротивления зависит от следующих факторов:

  • От длины проводника
  • От температуры проводника
  • От площади поперечного сечения (толщины) проводника
  • От материала, из которого сделан проводник
  • От силы тока
  • От напряжения

Единица измерения сопротивления-Ом. Названа в честь немецкого физика Георга Ома. Это тот самый Ом, который сформулировал закон Ома , без которого не обойтись при расчёте любой схемы. Физический смысл одного Ома таков: проводник имеет сопротивление 1 Ом, если сила тока, который протекает по этому проводнику, равна 1 А (Ампер), а напряжение, приложенное к концам этого проводника, равно 1 В (Вольт). Прибор для измерения сопротивления называется омметр.


Омметр. Прибор для измерения сопротивления.

Виды резисторов

Выпускается большое количество резисторов различных стандартных номиналов от единиц до миллионов Ом. Полезно знать соотношение величин сопротивлений:

1 КОм (килоом) = 1000 Ом
1 МОм (мегаом) = 1000 КОм = 1 000 000 Ом

Резисторы бывают трёх видов:

  • Постоянные
  • Переменные
  • Подстроечные

Самый многочисленный класс-это постоянные резисторы-резисторы, сопротивление которых нельзя изменить. Потому они и называются постоянными. Переменный резистор-»крутилка». Их используют, например, для регулировки громкости. Подстроечный резистор – это тоже переменный резистор, но выполненный в более компактном корпусе. От переменного он отличается в основном тем, что не рассчитан на частое изменение сопротивления. Если часто крутить подстроечный резистор, он быстро выйдет из строя. Предназначен для установки туда, где нужно настраиваемое сопротивление, но настраиваться оно должно один раз (при изготовлении платы на заводе). Подстроечные резисторы используются, например, в радиоприёмниках. Естественно, выпускается множество резисторов, отличающихся друг от друга различными параметрами. Для того, чтобы понять характеристики резистора, его параметры отмечаются прямо у него на корпусе. Как именно маркируются резисторы мы и поговорим далее.


Постоянные резисторы

Цветовая маркировка и другие способы обозначения номинала резистора

Когда говорят «номинал резистора», подразумевают «сопротивление резистора». Далее в тексте вы будете встречать оба термина. Почему возникла такая «двоякость» будет рассказано чуть ниже. Старые резисторы имели довольно большой размер, поэтому все номиналы указывались обычными буквами на корпусах этих резисторов. Но если вам в руки попадётся такой резистор, определить его сопротивление сразу вряд ли удастся, сопротивление там указывается не «в лоб». Кроме того, на резисторе указывалось не только его сопротивление, но и некоторые другие параметры. Чтобы в этом разобраться, рассмотрим характеристики постоянных резисторов. Резисторы характеризуются следующими свойствами:

  • Сопротивление
  • Класс точности (допуск)
  • Мощность рассеивания

Далее поговорим об этих свойствах и узнаем, каким образом они указываются на корпусе резистора. Сопротивление-главная характеристика резистора (ради сопротивления его и ставят). О том, что такое сопротивление, мы уже коротко обсудили в начале статьи, поэтому сразу перейдём к его обозначению. Забегая вперёд скажу, что если вы пришли сюда, чтобы узнать, как «прочитать» цветные полоски на корпусе резистора-приступайте к чтению сразу от заголовка «Цветовая маркировка резисторов». Потому что сейчас мы для лучшего понимания сути учимся считывать маркировку отечественных резисторов.

Если сопротивление меньше 1000 Ом:

В этом случае после цифры, которая указывает значение сопротивления, пишут букву R. Или не пишут совсем никакой буквы. На некоторых старых резисторах советского производства вы можете увидеть слово Ом. Позже на резисторы стало принято наносить следующие символы: сначала целую часть числа, затем букву R, а затем – дробную часть числа.

Примеры обозначения сопротивлений:

100 = 100 Ом
100 R = 100 Ом

Более поздние (современные) обозначения:

1R5 = 1,5 Ом
1R0 = 1 Ом
0R2 = 0,2 Ом

Если первая цифра – 0, то ее обычно не пишут, поэтому:

0R2 = R2 = 0,2 Ом

Если сопротивление больше 1000 Ом:

В этом случае, чтобы не писать большие числа, используют килоомы и мегаомы. Вообще-то есть и более весомые приставки, например Гига- и Тера-, но такие большие сопротивления в электронике практически не встречаются, поэтому ограничимся кило- и мегаомами. Принцип записи значений остается таким же, просто меняются буквы, а, следовательно, и значения сопротивлений. Примеры:

K100 = 100 Ом
1К0 = 1 КОм = 1000 Ом
1К5 = 1,5 КОм = 1500 Ом
M220 = 0,22 МОм = 220 KОм = 220 000 Ом
1М0 = 1 МОм = 1000 КОм = 1 000 000 Ом
3М3 = 3,3 МОм = 3300 КОм = 3 300 000 Ом

Это всё, что нужно знать про обозначение сопротивления. Можно обсудить следующую характеристику.

Класс точности резистора

Как изготовить резистор? Можно взять омметр, кусок проволоки и с помощью омметра измерить сопротивление куска проволоки определённой длины. Например, сопротивление сантиметрового отрезка нихромовой проволоки. Затем отмерить длину, которая даст нам нужное сопротивление и использовать этот кусок в качестве резистора. Примерно так всё и происходит в промышленности. Только вместо проволоки используют плёнки из специальных материалов, но суть остаётся прежней – известна длина (ширина, толщина, масса) некоего материала, который нужно упаковать в корпус для получения необходимого сопротивления. Но этот материал тоже нужно где-то производить, чем-то нарезать, куда-то перемещать. Все эти процессы влияют на сопротивление материала. Поэтому, трудно сделать все резисторы абсолютно одинаковыми – по разным причинам наблюдается разброс параметров. А если так, то все значения сопротивлений – это номинальные параметры, которые в реальности немного отличаются в ту или иную сторону. Поэтому и говорят «номинал резистора» вместо «сопротивление резистора». Величину этих отличий и определяет класс точности (допуск). Допуск измеряется в процентах.

Пример: резистор 100 Ом +/- 5%

Это означает, что сопротивление реального резистора может отличаться на пять процентов от номинала. Вспомним начальную школу: в нашем случае 100 Ом – это 100%, значит 5% – это 5 Ом.

100 – 5 = 95; 100 + 5 = 105

То есть величина конкретного резистора может «гулять» в пределах от 95 до 105 Ом. Для большинства схем это незначительно. Но в некоторых случаях требуется подобрать более точное сопротивление – тогда выбирают резистор с более высоким классом точности. То есть не 5%, а, например 2%.

На старых резисторах допуск так и пишут: 20%, 10%, 5% и т.п. Но есть еще буквенная кодировка. Если на резисторе номинал указан буквенным способом, то последняя буква (если она есть) обозначает величину допуска. Значения этих букв приведены в таблице:

Буква B C D F G J K M N
Допуск 0,1% 0,25% 0,5% 1% 2% 5% 10% 20% 30%

Примеры:
1К5К = 1,5 КОм 10%
1К0М = 1 КОм 20%
1К05В = 1,05 КОм 0,1%

Мощность рассеивания резистора

В физике мощность электрического тока обозначается буквой Р. Мощность измеряется в ваттах (обозначается Вт или W). Зависит мощность от силы тока и напряжения и для постоянного тока рассчитывается по формуле:

Если через резистор не протекает большой ток, то можно использовать резистор любой мощности – ничего с ним не случится. Но если через резистор течет значительный ток, то он может перегреться и выйти из строя (попросту сгореть). Поэтому, стоит рассчитать мощность, которая будет выделяться на резисторе – мощность рассеивания. Мощность пишется на корпусе резистора либо римскими, либо арабскими цифрами. На маломощных резисторах мощность обычно не указывают.

Примеры обозначений:

1 W = 1 Ватт
IV W = 4 Ватт
2 Вт = 2 Ватт
V Вт = 5 Ватт

Мы рассмотрели способ обозначения резисторов, который использовался раньше. Современные резисторы маркируют иначе. Старый способ был не слишком удобен, но номинал резистора при таком способе обозначения понять можно безо всяких справочников. Однако, пришлось всё сделать ещё хуже. Современная аппаратура имеет небольшие размеры, а значит и компоненты, которые в ней используются, также должны иметь минимальный размер. Резисторы нужны маленькие и, несмотря на то, что современные технологии позволяют нанести на них надпись, разглядеть эту надпись потом будет непросто. Поэтому была разработана цветовая маркировка резисторов.

Цветовая маркировка резисторов

Цветовая маркировка наносится на резистор в виде четырех или пяти цветных полос. У резисторов с четырьмя цветными полосками первая и вторая обозначают величину сопротивления в омах. Третья – это множитель, на который необходимо умножить величину сопротивления. Четвертая полоса определяет класс точности в процентах. Резисторы с пятью полосами – это резисторы с малой величиной допуска (0,1% – 2%). Первые три полосы – это величина сопротивления, четвертая – множитель, пятая – допуск. Каждому цвету соответствует своя цифра. Важно правильно выбрать порядок, в котором мы будем считывать цвета. Цветные кольца на резисторах сдвинуты к одному из выводов и располагаются слева направо. Если резистор слишком мал, и нет возможности сдвинуть маркировку к одному из выводов, то первая полоска делается приблизительно в два раза толще остальных. Но на некоторых резисторах эти правила не соблюдаются. В этом случае можно только угадать. Угадать нам поможет особенность маркировки: серебристый, золотистый и черный цвета определяют класс допуска резистора. Значит, полоски этих цветов никогда не бывают первыми. Поэтому, если
один из этих цветов (кроме черного) нанесен с какого-либо края, то этот край правый. Так же оранжевый, желтый и белый никогда не бывают последними. Значит, если один из этих цветов нанесен с какого-либо края, то это левый край.

Таблица для расшифровки цветовой маркировки резистора :

Цвет кольца или точек Первая цифра Вторая цифра Множитель Допуск, %
Черный 0 *1 1
Коричневый 1 1 *10 10 1%
Красный 2 2 *100 10 2 2%
Оранжевый 3 3 *1.000 10 3
Желтый 4 4 *10.000 10 4
Зеленый 5 5 *100.000 10 5 0,5%
Голубой 6 6 *1.000.000 10 6 0,25%
Фиолетовый 7 7 *10.000.000 10 7 0,1%
Серый 8 8 *100.000.000 10 8 0,05%
Белый 9 9 *1.000.000.000 10 9
Золотистый *0,1 10 -1 5%
Серебристый *0,01 10 -2 10%


Можно потренироваться определять номинал на этой картинке.

Есть еще резисторы, предназначенные для поверхностного монтажа (SMD). Такие резисторы настолько малы, что даже цветные полоски разместить на них проблематично. Маркировку сопротивлений на них принято наносить другим способом. Закодированное значение состоит из трех или четырех цифр. Последняя цифра означает степень числа десять, то есть просто количество нулей, которые нужно приписать к первым цифрам, чтобы получить значение в омах.

103 – последняя цифра 3, значит, к числу 10 приписываем три нуля, получаем 10 000 Ом = 10
КОм.

1562 – последняя цифра 2, значит, к числу 156 приписываем два нуля, получаем 15600 Ом =
15,6 КОм.

Если последняя цифра – ноль, то первые цифры и есть номинальное значение. Например, если на резисторе указана маркировка «100», то к числу 10 приписываем ноль нулей, получаем 10 Ом.


SMD резистор 47кОм

После прочтения статьи мы узнали, для чего нужны резисторы, какими бываю маркировки на резисторах и научились определять сопротивление резистора. Теперь самое время приступить к использованию данных приборов в реальных схемах.

Есть и другие статьи, которые помогут научиться правильно использовать резистор в реальных электрических схемах:

Купить набор из 600 штук наиболее востребованных резисторов (30 номиналов по 20 штук каждого) по ссылке или вот ещё хороший расширенный набор из 820 резисторов (41 номинал по 20 штук каждого) здесь.
А ещё я собираю большой список проверенных продавцов. Ознакомиться можно .

Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры. Раньше резисторы назывались сопротивлениями, но в соответствии с Государственным стандартом электрическим сопротивлениям, как схемным элементам, присвоено название «резисторы».

Сделано это было с целью различать «сопротивление» как изделие (радиокомпонент) и «сопротивление», как его физическое свойство, электрическую величину. Резисторы характеризуются электрическим сопротивлением.

Основной единицей электрического сопротивления в соответствии с международной системой единиц является Ом. На практике используются также производные единицы — килоом (кОм), мегаом (МОм), гигаом (ГОм), тераом (ТОм), которые связаны с основной единицей следующими соотношениями:

  • 1 кОм = 10^3 Ом,
  • 1 МОм = 10^6 Ом,
  • 1 ГОм = 10^9 Ом,
  • 1 ТОм = 10^І2 Ом.

Различают следующие виды резисторов : постоянные и переменные . Переменные еще делят на регулировочные и подстроечные. У постоянных резисторов сопротивление нельзя изменять в процессе эксплуатации.

Резисторы, с помощью которых осуществляют различные регулировки в радиоэлектронной аппаратуре изменением их сопротивления, называют переменными резисторами или потенциометрами. Те резисторы , сопротивление которых изменяют только в процессе налаживания (настройки) радиоэлектронного устройства, называют подстроечными .

Основные параметры резисторов

Резисторы характеризуются такими основными параметрами: номинальным значением сопротивления, допустимым отклонением сопротивления от номинального значения, номинальной (допустимой) мощностью рассеяния, максимальным рабочим напряжением, температурным коэффициентом сопротивления, собственными шумами и коэффициентом напряжения.

Номинальное значение сопротивления R обычно обозначено на корпусе резистора. Действительное значение сопротивления резистора может отличаться от номинального в пределах допустимого отклонения (допуска, определяемого в процентах по отношению к номинальному сопротивлению).

Маркировка резисторов

На корпусе резистора, как правило, наносится краской его тип, номинальная мощность, номинальное сопротивление, допуск и дата изготовления. Для маркировки малогабаритных резисторов используют бук-венно-цифровой код. Код состоит из цифр, обозначающих номинальное сопротивление, буквы, обозначающей единицу измерения, и буквы, указывающей допустимое отклонение сопротивления. Примеры наносимого на корпус резистора буквенного кода единиц измерения номинального сопротивления старого и нового стандартов приведены в табл. 1.

Если номинальное сопротивление выражается целым числом, то буквенный код ставится после этого числа. Если же номинальное сопротивление представляет собой десятичную дробь, то буква ставится- вместо запятой, разделяя целую и дробную части. В случае, когда десятичная дробь меньше единицы, целая часть (ноль) исключается.

При маркировке резисторов код допуска ставится после кодированного обозначения номинального сопротивления. Буквенные коды допусков приведены в табл. 2.

Например, обозначение 4К7В (или 4К7М) соответствует номинальному сопротивлению 4,7 кОм с допустимым отклонением 20%. В табл. 1 и 2 приведены буквенные коды, соответствующие как старым, так и новым стандартам, так как в настоящее время встречаются оба варианта. Номинальная мощность на малогабаритных резисторах не указывается, а определяется по размерам корпуса.

Таблица 1. Обозначение номинальной величины сопротивления на корпусах резисторов.

Полное обозначение Сокращенное обозначение на корпусе
Обозначение Примеры обозначения Обозначение единиц измерения Примеры обозначения
единиц измерении Старое Новое Старое Новое
Ом Омы R Е 13Е 470Е (К47)
кОм килоОмы К К
МОм мегаОмы 470 МОм М М М47

Таблица 2. Буквенные коды допусков сопротивлений, наносимых на корпуса резисторов.

Цветовой код маркировки резисторов

Тип маркировки, при котором на корпус резистора наносится краска в виде цветных колец или точек называют цветовым кодом (см. на рис. 1). Каждому цвету соответствует определенное цифровое значение.

Цветовая маркировка на резисторах сдвинута к одному из выводов и читается слева направо. Если маркировку нельзя разместить у одного, из выводов, то первый знак делается полосой шириной в два раза больше, чем остальные.

На резисторы с малой величиной допуска (0,1...10%), маркировка производится пятью цветовыми кольцами. Первые три кольца соответствуют численной величине сопротивления в омах, четвертое кольцо ерть множитель, а пятое кольцо — допуск (рис. 1).

Резисторы с величиной допуска 20% маркируются четырьмя цветными кольцами и на них величина допуска не наносится. Первые три кольца — численная величина сопротивления в омах, а четвертое кольцо — множитель. Иногда резисторы с допуском 20% маркируют тремя цветными кольцами.

В этом случае первые два кольца — численная величина сопротивления в омах, а третье кольцо — множитель. Незначащий ноль в третьем разряде не маркируется.

В связи с тем, что на рынке радиоаппаратуры значительное место занимают зарубежные изделия, заметим, что резисторы зарубежных фирм маркируются как цифровым, так и цветовым кодом.

При цифровой маркировке первые две цифры обозначают численную величину номинала резистора в омах, а оставшиеся представляют число нулей. Например: 150 — 15 Ом; 181 — 180 Ом; 132 — 1,3 кОм; 113—11 кОм.

Цветовая маркировка состоит обычно из четырех цветовых колец. Номинал сопротивления представляет первые три кольца, двух цифр и множителя. Четвертое кольцо содержит информацию о допустимом отклонении сопротивления от номинального значения в процентах.

Определение номиналов зарубежных резисторов по цветовому коду такое же, как и для отечественных. Таблицы цветовых кодов отечественных и зарубежных резисторов совпадают.

Многие фирмы, помимо традиционной маркировки, используют свою внутрифирменную цветовую и кодовую маркировки. Например, встречается маркировка SMD-резисторов, когда вместо цифры 8 ставится двоеточие. Так, маркировка 1:23 означает 182 кОм, a 80R6 — 80,6 Ом.

Цвет колец или точек Номинальное сопротивление, Ом Множитель Допуск, % ТКС, %/ГС
1-я цифра 2-я цифра З-я цифра 4-я цифра 5-я цифра п
Серебристый - - - 0601 ±10 -
Золотистый - - - 061 ±5 -
Черный - 0 - 1 - -
Коричневый 1 1 1 10 ±1 100
Красный 2 2 2 10^2 ±2 50
Оранжевый 3 3 3 10^3 - 15
Желтый 4 4 4 10^4 - 25
Зеленый 5 5 5 10^5 ±0,5 -
Синий 6 6 6 10^6 ±0,25 10
Фиолетовый 7 7 7 10^7 ±0,1 5
Серый 8 8 8 10^8 ±0,05 -
Белый 9 9 9 10^9 - 1

Рис. 1. Цветовая маркировка отечественных и зарубежных резисторов в виде колец или точек, в зависимости от допуска и ТКЕ.

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

Электрические сети требуют присутствия сопротивления, поэтому в них устанавливаются пассивные элементы в виде резисторов. И когда встает вопрос – маркировка сопротивлений – это напрямую связано с маркировкой резисторов. Ведь определить данный параметр этого элемента, не имея под рукой мультиметр, просто невозможно. Поэтому и были приняты стандарты маркировки. Их две: числовая и цветовая.

Числовая и буквенная

Буквы и числа использовались еще в период Советского Союза. Времена эти канули в лета, а вот советские резисторы остались, их до сих пор используют. Для того чтобы разобраться в марках, приведем несколько примеров.

В первую очередь необходимо разобраться с мощностью. Она обозначается в ваттах и зашифрована в марке элемента. К примеру, МЛТ-1. Это резистор металлопленочный, лакированный и теплоустойчивый с мощностью 1 ватт.

С сопротивлением все немного сложнее. Здесь используется буквенное обозначение латинского алфавита, которое определяет разряд.

  • «R» и «Е» — это измерение в Омах;
  • «К» обозначает килоОмы (кОм);
  • «М» мегаомы (мОм).

К примеру, 47Е или 47R – это резистор с 47 Ом. Или 47К – это сопротивление, равное 47 кОм. Или 1М – это один мегаом. Кстати, необходимо отметить, что цифры и буквы могут располагаться и наоборот, то есть, буквы впереди цифр: К47 – это 47 кОм или 470 Ом. Если величина сопротивления является не целым числом, то цифры, как обычно, разделяются запятой: 4,3К=4,3 кОм. В некоторых марках вместо запятой может стоять буква: 4К3=4,3 кОм.

На фотографии ниже можно увидеть именно последнюю маркировку, равную 1 кОм и обозначаемую как 1К0:


Цветовая

Буквенные и цифровые символы сошли на нет, современная маркировка сопротивления является цветной. А, точнее, состоит она из цветных полосок, которые нанесены по окружности корпуса элемента. Таких полосок может быть от трех до шести.

Именно такое обозначение было создано для того, чтобы легче можно было бы считывать номинальные параметры резистора в независимости от места его установки и положения. Хотя надо сказать о том, что огромное разнообразие цветовой маркировки создает трудности в запоминании цвета оформления. Поэтому в интернете есть много онлайн калькуляторов, с помощью которых можно легко определить характеристики резисторов. В них надо просто вставлять цвета, обозначенные полосками. В результате калькулятор выдаст параметр элемента.

Цветовая маркировка делится по количеству полосок:

  • три полосы – это обозначение с точностью 20%;
  • четыре – это точность в 5% или 10%;
  • пять – это точность 0,005%.


Резистор с шестью полосками – это элемент, в маркировку которого добавляется ТКС (температурный коэффициент сопротивления). Давайте рассмотрим каждую позицию по отдельности.

Три полосы

Что обозначает эта цветовая маркировка:

  • две первые цветные полосы – это числовое обозначение;
  • третья – это количество нулей.

Четыре

Здесь все то же самое. Единственное отличие – это четвертая полоса, которая может быть или золотой, или серебряной. Она обозначает точность, которая соответствует золото – 5%, серебро – 10%.

Приведем пример на основе рисунка, расположенного ниже:

Здесь первый цвет красный, что соответствует цифре «2». Второй фиолетовый – это «7». Третий желтый – это «4». Последняя цветовая маркировка – золотая (точность 5%). В результате получается, что резистор с такой маркировкой имеет сопротивление 270000 Ом или 270 кОм.

Пятиполосное обозначение

Данная цветовая маркировка определяет сопротивление в числовом эквиваленте тремя первыми полосками. Четвертая – это количество нулей за трехзначным числом. Пятая – это точность.

Еще один пример на основе рисунка:


Синий – 6, красный – 2, зеленый – 5, коричневый – 10, золотой – 5%. То есть, этот прибор имеет сопротивление – 6250 Ом или 6,25 кОм.

Шестиполосное обозначение

Здесь все точно так же, как и в предыдущем случае, только добавляется шестая полоса, обозначающая температурный коэффициент сопротивления. Он определяет, как может измениться сопротивление (в миллионных долях), если меняется температурный режим эксплуатации на один градус. Его единица измерения – ppm/ºC. Кстати, аббревиатура «ppm» расшифровывается как «part per million», что в переводе означает «часть на миллион».

Обозначение резисторов меньше 10 Ом

Цветовая маркировка элементов, у которых сопротивление меньше 10 Ом, требует дополнительной информации, заключенной в добавочных цветных оформлениях. Все дело в том, что стандартное количество полос и их цвета не могут точно описать номинал меньше десяти ом.


Поэтому к ним добавляется третья полоса, имеющая два цвета – это золотой и серебряный. Первый соответствует числу 0,1, второй числу 0,01. Остальные полосы обозначаются как обычно. Для примера вернемся к соответствующему разделу, где разбирался пример с рисунком в четыре цвета. В нем обозначено: красный – 2, фиолетовый 7, третья полоса, к примеру, будет золотой. Значит, сопротивление резистора будет:

27*0,1=2,7 Ом.

Еще раз напомним, что в цветовую маркировку входит точность показателя сопротивления. Как уже было сказано выше, обозначается она или золотой, или серебряной полосой. Они используются чаще всего. Но есть еще два цвета: красный – 2% и коричневый – 1%.

Похожие записи: