Какой заряд имеет атом. Атом в представлении древних мыслителей и ученых

Атом (от греч. «неделимый») - некогда мельчайшая частица вещества микроскопических размеров, наименьшая часть химического элемента, которая носит его свойства. Составляющие атома - протоны, нейтроны, электроны - этих свойств уже не имеют и образуют их в совокупности. Ковалентные атомы образуют молекулы. Ученые изучают особенности атома, и хотя они уже довольно неплохо изучены, не упускают возможности найти что-то новое - в частности, в области создания новых материалов и новых атомов (продолжающих таблицу Менделеева). 99,9% массы атома приходится на ядро.

Ученые из Университета Рэдбуда обнаружили новый механизм магнитного хранения информации в мельчайшей единице вещества: одном атоме. Несмотря на то, что доказательство принципа было продемонстрировано при очень низких температурах, этот механизм обещает функционировать и при комнатной температуре. Таким образом, можно будет хранить в тысячи раз больше информации, чем сейчас на жестких дисках. Результаты работы были опубликованы в Nature Communications.

АТОМ

(от греч. atomos - неделимый), наименьшая частица хим. элемента, носитель его св-в. Каждому хим. элементу соответствует совокупность определенных А. Связываясь друг с другом, А. одного или разных элементов образуют более сложные частицы, напр. молекулы. Все многообразие хим. в-в (твердых, жидких и газообразных) обусловлено разл. сочетаниями А. между собой. А. могут существовать и в своб. состоянии (в газе, плазме). Св-ва А., в т. ч. важнейшая для химии способность А. образовывать хим. соед., определяются особенностями его строения.

Общая характеристика строения атома. А. состоит из положительно заряженного ядра, окруженного облаком отрицательно заряженных электронов. Размеры А. в целом определяются размерами его электронного облака и велики по сравнению с размерами _ядра А^ (линейные размеры А. ~ 10~ 8 см, его ядра ~ 10" -10" 13 см). Электронное облако А. не имеет строго определенных границ, поэтому размеры А. в значит. степени условны и зависят от способов их определения (см. Атомные радиусы). Ядро А. состоит из Z протонов и Nнейтронов, удерживаемых ядерными силами (см. Ядро атомное). Положит. заряд протона и отрицат. заряд электрона одинаковы по абс. величине и равны е= 1,60*10 -19 Кл; не обладает элек-трич. зарядом. Заряд ядра +Ze - осн. характеристика А., обусловливающая его принадлежность к определенному хим. элементу. Порядковый номер элемента в периодич. системе Менделеева (атомный номер) равен числу протонов в ядре.

В электрически нейтральном А. число электронов в облаке равно числу протонов в ядре. Однако при определенных условиях он может терять или присоединять электроны, превращаясь соотв. в положит. или отрицат. ион, напр. Li + , Li 2+ или О - , О 2- . Говоря об А. определенного элемента, подразумевают как нейтральные А., так и этого элемента.

Масса А. определяется массой его ядра; масса электрона (9,109*10 -28 г) примерно в 1840 раз меньше массы протона или нейтрона ( 1,67*10 -24 г), поэтому вклад электронов в массу А. незначителен. Общее число протонов и нейтронов А = Z + N наз. массовым числом. Массовое число и заряд ядра указываются соотв. верхним и нижним индексами слева от символа элемента, напр. 23 11 Na. Вид атомов одного элемента с определенным значением Nназ. нуклидом. А. одного и того же элемента с одинаковыми Z и разными Nназ. изотопами этого элемента. Различие масс изотопов мало сказывается на их хим. и физ. св-вах. Наиболее значит, отличия (изотопные эффекты )наблюдаются у изотопов водорода вследствие большой относит. разницы в массах обычного атома (протия), дейтерия D и трития Т . Точные значения масс А. определяют методами масс-спектрометрии.

Квантовые состояния атома. Благодаря малым размерам и большой массе ядро А. можно приближенно считать точечным и покоящимся в центре масс А. и рассматривать А. как систему электронов, движущихся вокруг неподвижного центра - ядра. Полная энергия такой системы Еравна сумме кинетич. энергий Твсех электронов и потенциальной энергии U, к-рая складывается из энергии притяжения электронов ядром и энергии взаимного отталкивания электронов друг от друга. А. подчиняется законам квантовой механики; его осн. характеристика как квантовой системы - полная энергия Е - может принимать лишь одно из значений дискретного ряда Е 1 < Е 2 < Е 3 <> ...; промежут. значениями энергии А. обладать не может. Каждому из "разрешенных" значений Есоответствует одно или неск. стационарных (с не изменяющейся во времени энергией) состояний А. Энергия Еможет изменяться только скачкообразно - путем квантового перехода А. из одного стационарного состояния в другое. Методами квантовой механики можно точно рассчитать Едля одноэлектронных А. - водорода и водородоподобных: Е= ЧhcRZ 2 /n 2 ,> где h - постоянная Планка, с- скорость света, целое число п= 1, 2, 3, ... определяет дискретные значения энергии и наз. главным квантовым числом; R-постоянная Ридберга (hcR = 13,6 эВ). При использовании ф-ла для выражения дискретных уровней энергии одноэлектронных А. записывается в виде:

где т е -> масса электрона, -электрич. постоянная, Возможные "разрешенные" значения энергии электронов в А. изображают в виде схемы уровней энергии - горизонтальных прямых, расстояния между к-рыми соответствуют разностям этих значений энергий (рис. 1). наиб. низкий уровень E 1 , отвечающий минимально возможной энергии, наз. основным, все остальные - возбужденными. Аналогично наз. состояния (основное и возбужденныеХ к-рым соответствуют указанные уровни энергии. С ростом пуровни сближаются и при энергия электрона приближается к значению, отвечающему своб. (покоящемуся) электрону, удаленному из А. Квантовое состояние А. с энергией Еполностью описывается волновой ф-цией , где r-радиус-вектор электрона относительно ядра. Произведение равно вероятности нахождения электрона в объеме dV, то есть -плотность вероятности ( электронная плотность). Волновая ф-ция определяется уравнением Шрёдингера =, где R-оператор полной энергии (гамильтониан).

Наряду с энергией движение электрона вокруг ядра (орбитальное движение) характеризуется орбитальным моментом импульса (орбитальным мех. моментом) М 1 ; квадрат его величины может принимать значения, определяемые орбитальным квантовым числом l = 0, 1, 2, ...; , где . При заданном и квантовое число l может принимать значения от 0 до (и Ч 1). Проекция орбитального момента на нек-рую ось z также принимает дискретный ряд значений М lz =, где m l -магнитное квантовое число, имеющее дискретные значения от Ч l до +l(-l,... - 1, О, 1, ... + l), всего 2l + 1 значений. Ось z для А. в отсутствие внеш. сил выбирается произвольно, а в магн. поле совпадает с направлением вектора напряженности поля. Электрон обладает также собственным моментом импульса -спином и связанным с ним спиновым магн. моментом. Квадрат спинового мех. момента М S 2 =S(S> + + 1) определяется спиновым квантовым числом S= 1/2, а проекция этого момента на ось z sz = = -квантовым числом s ,> принимающим полуцелые значения s = 1 / 2 > и s =

Рис. 1. Схема уровней энергии атома водорода (горизонтальные линии) и оптич. переходов (вертикальные линии). Внизу изображена часть атомного спектра испускания водорода - две серии спектральных линий; пунктиром показано соответствие линий и переходов электрона.

Стационарное состояние одноэлектронного А. однозначно характеризуется четырьмя квантовыми числами: п, l, m l и m s . Энергия А. водорода зависит только от п, и уровню с заданным псоответствует ряд состояний, отличающихся значениями l, m l , s . > Состояния с заданными пи l принято обозначать как 1s, 2s, 2p, 3s и т. д., где цифры указывают значения л, а буквы s, p, d, f и дальше по латинскому алфавиту соответствуют значениям д = 0, 1, 2, 3, ... Число разл. состояний с заданными пи д равно 2(2l+ 1) числу комбинаций значений m l и m s . Общее число разл. состояний с заданным правно , т. е. уровням со значениями п= 1, 2, 3, ... соответствуют 2, 8, 18, ..., 2n 2 разл. квантовых состояний. Уровень, к-рому соответствует лишь одно (одна волновая ф-ция), наз. невырожденным. Если уровню соответствует два или более квантовых состояний, он наз. вырожденным (см. Вырождение энергетических уровней). В А. водорода уровни энергии вырождены по значениям l и m l ; вырождение по m s имеет место лишь приближенно, если не учитывать взаимод. спинового магн. момента электрона с магн. полем, обусловленным орбитальным движением электрона в электрич. поле ядра (см. Спин-орбитальное взаимодействие). Это - релятивистский эффект, малый в сравнении с кулоновским взаимод., однако он принципиально существен, т. к. приводит к дополнит. расщеплению уровней энергии, что проявляется в атомных спектрах в виде т. наз. тонкой структуры.

При заданных n, l и m l квадрат модуля волновой ф-ции определяет для электронного облака в А. среднее распределение электронной плотности. Разл. квантовые состояния А. водорода существенно отличаются друг от друга распределением электронной плотности (рис. 2). Так, при l = 0 (s-состояния) электронная плотность отлична от нуля в центре А. и не зависит от направления (т. е. сферически симметрична), для остальных состояний она равна нулю в центре А. и зависит от направления.

Рис. 2. Форма электронных облаков для различных состояний атома водорода.

В многоэлектронных А. вследствие взаимного электростатич. отталкивания электронов существенно уменьшается их связи с ядром. Напр., энергия отрыва электрона от иона Не + равна 54,4 эВ, в нейтральном атоме Не она значительно меньше - 24,6 эВ. Для более тяжелых А. связь внеш. электронов с ядром еще слабее. Важную роль в многоэлектронных А. играет специфич. обменное взаимодействие, связанное с неразличимостью электронов, и тот факт, что электроны подчиняются Паули принципу, согласно к-рому в каждом квантовом состоянии, характеризуемом четырьмя квантовыми числами, не может находиться более одного электрона. Для многоэлектронного А. имеет смысл говорить только о квантовых состояниях всего А. в целом. Однако приближенно, в т. наз. одноэлектронном приближении, можно рассматривать квантовые состояния отдельных электронов и характеризовать каждое одноэлектронное состояние (определенную орбиталъ, описываемую соответствующей ф-цией) совокупностью четырех квантовых чисел n, l, m l и s .> Совокупность 2(2l+ 1) электронов в состоянии с данными пи l образует электронную оболочку (наз. также подуровнем, подоболочкой); если все эти состояния заняты электронами, оболочка наз. заполненной (замкнутой). Совокупность состояний с одним и тем же n, но разными l образует электронный слой (наз. также уровнем, оболочкой). Для п= 1, 2, 3, 4, ... слои обозначают символами К, L, M, N, ... Число электронов в оболочках и слоях при полном заполнении приведены в таблице:

Прочность связи электрона в А., т. е. энергия, к-рую необходимо сообщить электрону, чтобы удалить его из А., уменьшается с увеличением п, а при данном п - с увеличением l. Порядок заполнения электронами оболочек и слоев в сложном А. определяет его электронную конфигурацию, т. е. распределение электронов по оболочкам в основном (невозбужденном) состоянии этого А. и его ионов. При таком заполнении последовательно связываются электроны с возрастающими значениями и и /. Напр., для А. азота (Z = 7) и его ионов N + , N 2+ , N 3+ , N 4+ , N 5+ и N 6+ электронные конфигурации имеют вид соотв.: Is 2 2s 2 2p 3 ; Is 2 2s 2 2p 2 ; Is 2 2s 2 2p; Is 2 2s 2 ; Is 2 2s; Is 2 ; Is (число электронов в каждой оболочке указывается индексом справа сверху). Такие же электронные конфигурации, как и у ионов азота, имеют нейтральные А. элементов с тем же числом электронов: С, В, Be, Li, He, Н (Z = 6, 5, 4, 3, 2, 1). Начиная с n = 4 порядок заполнения оболочек изменяется: электроны с большим п, но меньшим l оказываются связанными прочнее, чем электроны с меньшим пи большим l (правило Клечковского), напр. 4s-электроны связаны прочнее 3d-электронов, и сперва заполняется оболочка 4s, а затем 3d. При заполнении оболочек 3d, 4d, 5d получаются группы соответствующих переходных элементов; при заполнении 4f- и 5f-оболочек - соотв. лантаноиды и . Порядок заполнения обычно соответствует возрастанию суммы квантовых чисел (п+ l); при равенстве этих сумм для двух или более оболочек сначала заполняются оболочки с меньшим и. Имеет место след. последовательность заполнения электронных оболочек:

Для каждого периода указаны электронная конфигурация благородного газа, макс. число электронов, а в последней строке приведены значения п+ l. Имеются, однако, отступления от этого порядка заполнения (подробнее о заполнении оболочек см. Периодическая система химических элементов).

Между стационарными состояниями в А. возможны квантовые переходы. При переходе с более высокого уровня энергии Е i на более низкий E k А. отдает энергию (E i Ч E k), при обратном переходе получает ее. При излучательных переходах А. испускает или поглощает квант электромагн. излучения (фотон). Возможны и , когда А. отдает или получает энергию при взаимод. с др. частицами, с к-рыми он сталкивается (напр., в газах) или длительно связан (в молекулах, жидкостях и твердых телах). В атомарных газах в результате столкновения своб. А. с др. частицей он может перейти на др. уровень энергии - испытать неупругое столкновение; при упругом столкновении изменяется лишь кинетич. энергия постулат. движения А., а его полная внутр. энергия Еостается неизменной. Неупругое столкновение своб. А. с быстро движущимся электроном, отдающим этому А. свою кинетич. энергию, - возбуждение А. электронным ударом - один из методов определения уровней энергии А.

Строение атома и свойства веществ. Хим. св-ва определяются строением внеш. электронных оболочек А., в к-рых электроны связаны сравнительно слабо (энергии связи от неск. эВ до неск. десятков эВ). Строение внеш. оболочек А. хим. элементов одной группы (или подгруппы) периодич. системы аналогично, что и обусловливает сходство хим. св-в этих элементов. При увеличении числа электронов в заполняющейся оболочке их энергия связи, как правило, увеличивается; наиб. энергией связи обладают электроны в замкнутой оболочке. Поэтому А. с одним или неск. электронами в частично заполненной внеш. оболочке отдают их в хим. р-циях. А., к-рым не хватает одного или неск. электронов для образования замкнутой внеш. оболочки, обычно принимают их. А. благородных газов, обладающие замкнутыми внеш. оболочками, при обычных условиях не вступают в хим. р-ции.

Строение внутр. оболочек А., электроны к-рых связаны гораздо прочнее (энергия связи 10 2 -10 4 эВ), проявляется лишь при взаимод. А. с быстрыми частицами и фотонами высоких энергий. Такие взаимод. определяют характер рентгеновских спектров и рассеяние частиц (электронов, нейтронов) на А. (см. Дифракционные методы). Масса А. определяет такие его физ. св-ва, как импульс, кинетич. энергия. От механических и связанных с ними магн. и электрич. моментов ядра А. зависят нек-рые тонкие физ. эффекты (ЯМР, ЯКР, сверхтонкая структура спектральных линий, см Спектроскопия).

Более слабые по сравнению с хим. связью электростатич. взаимод. двух А. проявляются в их взаимной поляризуемости - смещении электронов относительно ядер и возникновении поляризац. сил притяжения между А. (см. Межмолекулярные взаимодействия). А. поляризуется и во внеш. электрич. полях; в результате уровни энергии смещаются и, что особенно важно, вырожденные уровни расщепляются (см. Штарка эффект). А. может поляризоваться также под действием электрич. поля волны электромагн. излучения; зависит от частоты излучения, что обусловливает зависимость от нее показателя преломления в-ва, связанного с поляризуемостью А. Тесная связь оптич. св-в А. с его электрич. св-вами особенно ярко проявляется в оптич. спектрах.

Внеш. электроны А. определяют и магн. св-ва в-ва. В А. с заполненными внеш. оболочками его магн. момент, как и полный момент импульса (мех. момент), равен нулю. А. с частично заполненными внеш. оболочками обладают, как правило, постоянными магн. моментами, отличными от нуля; такие в-ва парамагнитны (см. Парамагнетики). Во внеш. магн. поле все уровни энергии А., для к-рых магн. момент не равен нулю, расщепляются (см. Зеемана эффект). Все А. обладают диамагнетизмом, к-рый обусловлен возникновением у них индуцированного магн. момента под действием внеш. магн. поля (см. Диэлектрики).

Св-ва А., находящегося в связанном состоянии (напр., входящего в состав молекул), отличаются от св-в своб. А. наиб. изменения претерпевают св-ва, определяемые внеш. электронами, принимающими участие в хим. связи; св-ва, определяемые электронами внутр. оболочек, могут при этом практически не изменяться. Нек-рые св-ва А. могут испытывать изменения, зависящие от симметрии окружения данного атома. Примером может служить расщепление уровней энергии А. в кристаллах и комплексных соед., к-рое происходит под действием электрич. полей, создаваемых окружающими ионами или лигандами.

Лит.: Карапетьянц М. X., Дракин С. И., Строение , 3 изд., М., 1978; Шло лье кий Э. В., Атомная физика, 7 изд., т. 1-2, М., 1984. М. А. Ельяшевич.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Синонимы :

Смотреть что такое "АТОМ" в других словарях:

    атом - атом, а … Русский орфографический словарь

    - (греч. atomos, от а отриц. част., и tome, tomos отдел, отрезок). Бесконечно малая неделимая частица, совокупность которых составляет всякое физическое тело. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АТОМ греч … Словарь иностранных слов русского языка

    атом - а м. atome m. 1. Мельчайшая неделимая частица вещества. Атомы не могут быть вечны. Кантемир О природе. Ампер полагает, что каждая неделимая частица материи (атом) содержит неотъемлемое от нея количество электричества. ОЗ 1848 56 8 240. Да будет… … Исторический словарь галлицизмов русского языка

    АТОМ, мельчайшая частица вещества, которая может вступать в химические реакции. У каждого вещества имеется характерный только для него набор атомов. В свое время считалось, что атом неделим, однако, он состоит из положительно заряженного ЯДРА,… … Научно-технический энциклопедический словарь

    - (от греч. atomos – неделимое) мельчайшие составные частицы материи, из которых состоит все сущее, в т. ч. и душа, образованная из тончайших атомов (Левкипп, Демокрит, Эпикур). Атомы вечны, они не возникают и не исчезают, пре бывая в постоянном… … Философская энциклопедия

    Атом - Атом ♦ Atome Этимологически атом – неделимая частица, или частица, подвластная только умозрительному делению; неделимый элемент (atomos) материи. В этом смысле понимают атом Демокрит и Эпикур. Современным ученым хорошо известно, что это… … Философский словарь Спонвиля

    - (от греч. atomos неделимый) мельчайшая частица химического элемента, сохраняющая его свойства. В центре атома находится положительно заряженное Ядро, в котором сосредоточена почти вся масса атома; вокруг движутся электроны, образующие электронные … Большой Энциклопедический словарь

Атом - это мельчайшая частица химического вещества, которая способна сохранять его свойства. Слово «атом» происходит от древнегреческого «atomos», что означает «неделимый». В зависимости о того, сколько и каких частиц находится в атоме, можно определить химический элемент .

Кратко о строении атома

Как можно вкратце перечислить основные сведения о является частицей с одним ядром, которое заряжено положительно. Вокруг этого ядра расположено отрицательно заряженное облако из электронов. Каждый атом в своем обычном состоянии является нейтральным. Размер этой частицы полностью может быть определен размером электронного облака, которое окружает ядро.

Само ядро, в свою очередь, тоже состоит из более мелких частиц - протонов и нейтронов. Протоны являются положительно заряженными. Нейтроны не несут в себе никакого заряда. Однако протоны вместе с нейтронами объединяются в одну категорию и носят название нуклонов. Если необходимы основные сведения о строении атома кратко, то эта информация может быть ограничена перечисленными данными .

Первые сведения об атоме

О том же, что материя может состоять из мелких частиц, подозревали еще древние греки. Они полагали, что все существующее и состоит из атомов. Однако такое воззрение носило чисто философский характер и не может быть трактовано научно.

Первым основные сведения о строении атома получил английский ученый Именно этот исследователь сумел обнаружить, что два химических элемента могут вступать в различные соотношения, и при этом каждая такая комбинация будет представлять собой новое вещество. Например, восемь частей элемента кислорода порождают собой углекислый газ. Четыре части кислорода - угарный газ.

В 1803 году Дальтон открыл так называемый закон кратных отношений в химии. При помощи косвенных измерений (так как ни один атом тогда не мог быть рассмотрен под тогдашними микроскопами) Дальтон сделал вывод об относительном весе атомов .

Исследования Резерфорда

Почти столетие спустя основные сведения о строении атомов были подтверждены еще одним английским химиком - Ученый предложил модель электронной оболочки мельчайших частиц.

На тот момент названная Резерфордом «Планетарная модель атома» была одним из важнейших шагов, которые могла сделать химия. Основные сведения о строении атома свидетельствовали о том, что он похож на Солнечную систему: вокруг ядра по строго определенным орбитам вращаются частицы-электроны, подобно тому, как это делают планеты.

Электронная оболочка атомов и формулы атомов химических элементов

Электронная оболочка каждого из атомов содержит ровно столько электронов, сколько находится в его ядре протонов. Именно поэтому атом является нейтральным. В 1913 году еще один ученый получил основные сведения о строении атома. Формула Нильса Бора была похожа на ту, что получил Резерфорд. Согласно его концепции, электроны также вращаются вокруг ядра, расположенного в центре. Бор доработал теорию Резерфорда, внес стройность в ее факты.

Уже тогда были составлены формулы некоторых химических веществ. Например, схематически строение атома азота обозначается как 1s 2 2s 2 2p 3 , строение атома натрия выражается формулой 1s 2 2s 2 2p 6 3s 1 . Через эти формулы можно увидеть, какое количество электронов движется по каждой из орбиталей того или иного химического вещества.

Модель Шредингера

Однако затем и эта атомная модель устарела. Основные сведения о строении атома, известные науке сегодня, во многом стали доступны благодаря исследованиям австрийского физика

Он предложил новую модель его строения - волновую. К этому времени ученые уже доказали, что электрон наделен не только природой частицы, но обладает свойствами волны.

Однако у модели Шредингера и Резерфорда имеются и общие положения. Их теории сходны в том, что электроны существуют на определенных уровнях.

Такие уровни также называются электронными слоями. При помощи номера уровня может быть охарактеризована энергия электрона. Чем выше слой, тем большей энергией он обладает. Все уровни считаются снизу вверх, таким образом, номер уровня соответствует его энергии. Каждый из слоев в электронной оболочке атома имеет свои подуровни. При этом у первого уровня может быть один подуровень, у второго - два, у третьего - три и так далее (см. приведенные выше электронные формулы азота и натрия).

Еще более мелкие частицы

На данный момент, конечно, открыты еще более мелкие частицы, нежели электрон, протон и нейтрон. Известно, что протон состоит из кварков. Существуют и еще более мелкие частицы мироздания - например, нейтрино, который по своим размерам в сто раз меньше кварка и в миллиард раз меньше протона.

Нейтрино - это настолько мелкая частица, что она в 10 септиллионов раз меньше, чем, к примеру, тираннозавр. Сам тираннозавр во столько же раз меньших размеров, чем вся обозримая Вселенная.

Основные сведения о строении атома: радиоактивность

Всегда было известно, что ни одна химическая реакция не может превратить один элемент в другой. Но в процессе радиоактивного излучения это происходит самопроизвольно.

Радиоактивностью называют способность ядер атомов превращаться в другие ядра - более устойчивые. Когда люди получили основные сведения о строении атомов, изотопы в определенной мере могли служить воплощением мечтаний средневековых алхимиков.

В процессе распада изотопов испускается радиоактивное излучение. Впервые такое явление было обнаружено Беккерелем. Главный вид радиоактивного излучения - это альфа-распад. При нем происходит выброс альфа-частицы. Также существует бета-распад, при котором из ядра атома выбрасывается, соответственно, бета-частица.

Природные и искусственные изотопы

В настоящее время известно порядка 40 природных изотопов. Их большая часть расположена в трех категориях: урана-радия, тория и актиния. Все эти изотопы можно встретить в природе - в горных породах, почве, воздухе. Но помимо них, известно также порядка тысячи искусственно выведенных изотопов, которые получают в ядерных реакторах. Многие их таких изотопов используются в медицине, особенно в диагностике .

Пропорции внутри атома

Если представить себе атом, размеры которого будут сопоставимы с размерами международного спортивного стадиона, тогда можно визуально получить следующие пропорции. Электроны атома на таком «стадионе» будут располагаться на самом верху трибун. Каждый из них будет иметь размеры меньше, чем булавочная головка. Тогда ядро будет расположено в центре этого поля, а его размер будет не больше, чем размер горошины.

Иногда люди задают вопрос, как в действительности выглядит атом. На самом деле он в буквальном смысле слова не выглядит никак - не по той причине, что в науке используются недостаточно хорошие микроскопы. Размеры атома находятся в тех областях, где понятие «видимости» просто не существует.

Атомы обладают очень малыми размерами. Но насколько малы в действительности эти размеры? Факт состоит в том, что самая маленькая, едва различимая человеческим глазом крупица соли содержит в себе порядка одного квинтиллиона атомов.

Если же представить себе атом такого размера, который мог бы уместиться в человеческую руку, то тогда рядом с ним находились бы вирусы 300-метровой длины. Бактерии имели бы длину 3 км, а толщина человеческого волоса стала бы равна 150 км. В лежачем положении он смог бы выходить за границы земной атмосферы. А если бы такие пропорции были действительны, то человеческий волос в длину смог бы достигать Луны. Вот такой он непростой и интересный атом, изучением которого ученые продолжают заниматься и по сей день.

Наш мир таит в себе много тайного и неразгаданного, потому что физические и химические процессы поистине удивительны. Но ученые постоянно стремились понять сущность материи, из которой соткана жизнь во вселенной. Этот вопрос часто стал возникать у человечества на протяжении долгого времени. Эта статья расскажет, что такое простой атом, из каких элементарных частиц он состоит, а также как ученые открыли существование наименьшей части химического элемента.

Что же такое атом, и как его открыли

Атом - самая малая часть химического элемента. Атомы различных элементов отличаются количеством протонов и нейтронов.

Сравнительный размер атома гелия и его ядра

Первыми, кто начал серьезно задумываться над тем, из чего же состоят все предметы, стали древние греки. Кстати, слово «атом» пришло из греческого языка и в переводе означает «неделимый». Греки считали, что рано или поздно останется такая частица, которую невозможно будет поделить. Но их рассуждения были скорее умозрительными, нежели научными, так что нельзя говорить о том, что этот древний народ был первым, кто сделал великие открытия о существовании мелких частиц.

Рассмотрим наиболее ранние представления о том, что такое атом.

Древнегреческий философ Демокрит предполагал, что основные параметры любого вещества - форма и масса, и что любое вещество состоит из мелких частиц. Демокрит привел пример с огнем: если он обжигает, то частицы, из которых он состоит, являются острыми. У воды, наоборот, гладкие, так как она способна течь. А состояние частиц твердых предметов, по его мнению, шероховатое, так как они способны напрочь скрепляться друг с другом. Также Демокрит был уверен в том, что душа человека состоит из атомов.

Интересный факт: если до XIX века вопросом об атоме занимались только философы, то Джон Дальтон стал первым экспериментатором, кто занялся изучением мелких частиц. В процессе опытов он выяснил, что атомы имеют разную массу, а также разные свойства. Кстати, изучать расположение атомов в молекулах конкретных веществ гораздо интереснее, если наблюдать за химическими реакциями, которые протекают при проведении опытов . Труды Дальтона хоть и не объяснили, что такое атом в целом, зато дали напутствие для некоторых других ученых.


Атомы и молекулы, изображенные Джоном Дальтоном (1808 год)

В 1904 году Джон Томсон выдвинул предположение о модели атома: ученый считал, что атом состоит из положительно заряженной субстанции, внутри которой расположены отрицательно заряженные корпускулы. Проблема предположения в том, что Томпсон стремился с помощью собственной модели рассмотреть спектральные линии элементов, но его эксперименты стали не особо получаться.

В то же время японский физик Хатаро Нагаока допустил, что атом похож на планету Сатурн: якобы состоит из ядра с положительным зарядом и электронов, которые вокруг него вращаются. Но его модель атома оказалась не совсем правильной.

В 1911 году ученый Резерфорд выдвинул другое предположение об устройстве атома. Результат его гипотез стал ошеломительным: сейчас в современной науке во многом полагаются на открытие этого физика.

В 1913 году Нильс Бор выдвинул полуклассическую теорию устройства атома, основываясь на трудах Резерфорда.

Создание модели атома Резерфорда

Давайте рассмотрим эту модель, потому что она подробно описывает некоторые свойства атома. Как уже говорилось ранее, Эрнест Резерфорд, «отец» ядерной физики, начал работать над моделью атома в 1911 году. Нужный результат физик начал получать, когда стал опровергать модель атома Томсона. На помощь ученому пришел эксперимент по рассеиванию альфа-частиц Гейгера и Марсдена. Ученый предположил, что в атоме есть очень маленькое положительно заряженное ядро. Эти доводы помогли при создании модели атома, которая похожа на солнечную систему, отчего ей было дано название «Планетарная модель атома» .


Планетарная модель атома: ядро (красное) и электроны (зелёные)

В центре атома располагается ядро, которое содержит в себе практически всю массу атома и имеет положительный заряд. Ядро состоит из протонов и нейтронов. Протоны - элементарные частицы с положительным зарядом, а нейтроны - элементарные частицы, не имеющие заряда. Вокруг ядра, подобно планетам солнечной системы, вращаются электроны.

> Из чего состоит атом?

Из чего состоит атом?

Строение атома и его ядра физики всего мира тщательно изучали всю первую половину XX в. Многих поражало, что несмотря на свою малость - одна капля воды состоит примерно из 6000 миллиардов миллиардов (6 000 000 000 000 000 000 000) атомов водорода и кислорода - каждый атом имеет строение, в некоторой степени сходное со строением нашей Солнечной системы. Вокруг ядра - «солнца» вращаются крохотные «планеты» - электроны. В свою очередь, атомное ядро состоит из двух основных строительных кирпичиков Вселенной - протонов и нейтронов, или, как их еще называют, нуклонов. Электрон и протон - заряженные частицы. Причем величина заряда каждого из них одинакова; с той лишь разницей, что протон всегда заряжен положительно, а электрон - отрицательно. Нейтрон не несет электрического заряда, зато имеет очень большую проницаемость.
Ядра атомов одного элемента всегда содержат одинаковое число протонов. Но число нейтронов может быть разным, и такие разновидности элемента называются изотопами. Обычно нейтроны и протоны в ядре держатся очень прочно. За это отвечают так называемые внутриядерные силы, которые компенсируют силы отталкивания протонов и не дают ядру самопроизвольно развалиться.