1 признак равенства треугольников называется. Первый признак равенства треугольников

Билет 2

Вопрос 1

Признаки равенства треугольников (доказательство всех)

1-ый признак равенства треугольников: по двум сторонам и углу между ними (Теорема 3.1. Признак равенства треугольников по двум сторонам и углу между ними - Если две стороны и угло между ними одного треугольнгрка равны соотвественно двум сторонам и углу между ними другого треугольника, то такие треугольники равны )

Доказательство:

Пусть у треугольников АВС и А 1 В 1 С 1 угол А равен углу А 1 , АВ равно А 1 В 1, АС равно А 1 С 1 , докажем, что треугольники равны.

Так как А 1 В 1 равно А 1 В 2 , то вершина В 2 совпадет с В 1. Так как угол В 1 А 1 С 1 равен углу В 2 А 1 С 2, то луч А 1 С 2 совпадет с А 1 С 1 . Так как А 1 С 1 равен А 1 С 2 , то С 2 совпадет с С 1. Значит треугольник А 1 В 1 С 1 совпадает стреугольниом А 1 В 2 С 2 , значит равен треугльнику АВС.

Теорема доказана.

2-ой признак равенства треугольников: по стороне и прилежим к ней углам (Теорема 3.2. - Признак равенства треугольников по стороне и прилежащим к ней углам - Если сторона и прилежащие у ней углы одного треугольника равны соотвественно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны)

Доказательство:

Пусть АВС и А 1 В 1 С 1 – два треугольника, у которых АВ равно А 1 В 1, угол А равен углу А 1 , и угол В равен углу В 1 . Докажем, что они равны.

Пусть А 1 В 2 С 2 – треугольник, равный АВС, с вершины В 2 на луче А 1 В 1 и вершины С 2 в той же полуплоскости относительно прямой А 1 В 1 , где лежит вершина С 1 .

Так как А 1 В 2 равно А 1 В 1 , то вершина В 2 совпадет с В 1. Так как угол В 1 А 1 С 2 равен углу В 1 А 1 С 1, и угол А1В1С2 равен углу А1В1С1, то луч А 1 С 2 совпадет с А 1 С 1 , а В 1 С 2 совпадет с В 1 С 1 . Отсюда следует, что вершина С 2 совпадет с С 1. Значит треугольник А 1 В 1 С 1 совпадает стреугольниом А 1 В 2 С 2 , значит равен треугльнику АВС.

Теорема доказана.

3-ий признак равенства треугольников: по трем сторонам (Теорема 3.6. - Признак равенства треугольников по трем сторонам - Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны)

Доказательство:

Пусть АВС и А 1 В 1 С 1 – два треугольника, у которых АВ равно А 1 В 1, АС равно А 1 С 1 , и ВС равно В 1 С 1 . Докажем, что они равны.

Допустим, треугольники не равны. Тогда у них угол А не равен углу А 1 , угол В не равен углу В 1, и угол С не равен углу С 1 . Иначе они были бы равны, по перовому признаку.

Пусть А 1 В 1 С 2 – треугольник, равный треугольнику АВС, у которого Свершина С 2 лежит в одной полуплоскости с вершиной С 1 относительно прямой А 1 В 1 .

Пусть D – середина отрезка С 1 С 2 . Треугольники А 1 С 1 С 2 и В 1 С 1 С 2 – равнобедренные с общим основанием С 1 С 2 . Поэтому их медианы А 1 D и В 1 D – являются высотами, значит прямые А 1 D и В 1 D – перпендикулярны прямой С 1 С 2. Прямые А 1 D и В 1 D не совпадают, так как точки А 1, В 1 , D не лежат на одной прямой, но через точку D прямой С 1 С 2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию.

В этой статье мы расскажем, как можно сформулировать и доказать первый признак равенства треугольников , который проходят в 7 классе.

Формулировка первого признака равенства треугольников

«Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то эти треугольники равны.»

Сокращенно его называют равенство «по двум сторонам и углу между ними».

Прежде чем перейти к необходимо вспомнить, что называют треугольником и в каком случае можно утверждать, что два треугольника равны.

Что такое треугольник и когда они считаются равными?

Треугольник – это геометрическая фигура из трёх отрезков, соединяющих три точки (при условии, что они не лежат на одной прямой. Эти точки считаются вершинами треугольника. А соединяющие их отрезки – сторонами ).

На рисунке 1 представлен треугольник ABС. Который имеет три вершины (А, В и С). И стороны – АВ, АС и ВС.

Рисунок 1

Треугольники считаются равными, когда все их стороны и углы соответственно равны друг другу (в случае, когда равны лишь углы, а стороны пропорциональны, треугольники называются подобными ). Таким образом очевидно, что равные треугольники можно наложить друг на друга – и они полностью совпадут.

Доказательство первого признака равенства треугольников

Дано:

Два треугольника: ABC и DEF (рисунок 2).

Рисунок 2

По условию теоремы две пары отрезков этих треугольников равны между собой (АС = FD и СВ = EF). Углы между отрезками также равны (т.е. ∠АСВ = ∠EFD).

Доказать , что треугольник ABC равен треугольнику DEF.

Доказательство:

  1. Поскольку имеется равенство углов (∠АСВ = ∠EFD), треугольники можно наложить друг на друга, так чтобы вершина С совпадала с вершиной F.
  2. При этом отрезки СА и СВ наложатся на отрезки FE и FD.
  3. А поскольку отрезки двух треугольников равны между собой (АС = FD и СВ = EF по условию), то отрезок АВ также совпадёт со стороной ED.
  4. Это в свою очередь даст совмещение вершин А и D, В и Е.
  5. Следовательно, треугольники полностью совместятся, а значит, они равны.

Теорема доказана.

На этом уроке мы будем изучать первый признак равенства треугольников. Вначале сформулируем и докажем теорему о первом признаке равенства треугольников. Далее будем решать задачи на использование первого признака равенства треугольников.

На предыдущем занятии мы ввели понятие «равные треугольники» - треугольники, которые можно совместить наложением. Однако очень трудно сравнивать фигуры по определению, поэтому мы введем признаки равенства треугольников - по некоторым элементам.

Рис. 1. Треугольники АВС и A 1 B 1 C 1 равны

Докажем теорему: если две стороны и угол между ними одного треугольника и соответствующие им две стороны и угол между ними второго треугольника равны, то данные треугольники равны.

Теорема: Дано . Доказать: АВС и .

Доказательство: Выполним наложение данных в условии фигур. В результате данного действия вершины А и А 1 , отрезки АВ и А 1 В 1, АС и А 1 С 1 совпадают. Если рассматривать треугольники в целом, то совпадёт с .

Теорема доказана.

Рассмотрим несколько задач.

Отрезки АС и ВD точкой их пересечения О делятся пополам. Докажите, что .

Доказательство: Выполним пояснительный рисунок.

Рис. 2. Чертеж к примеру 1

Отметим, что углы АОВ и СОD равны, как вертикальные, а стороны ВО и АО треугольника АОВ соответственно равны сторонам OD и ОС треугольника СОD. Поэтому треугольники АОВ и СОD равны по первому признаку.

Отрезки АС и BD точкой пересечения делятся пополам. Докажите, что .

Рис. 3. Чертеж к примеру 2

В предыдущей задаче мы доказали, что по первому признаку. Из этих соображений мы можем сделать вывод, что AB = CD, ∠OAB = ∠OCD.

Теперь рассмотрим треугольники. У них АС - общая сторона, AB=CD, а ∠СAB = ∠АCD (по доказанному). Поэтому по первому признаку равенства. Что и требовалось доказать.

Рис. 4. Чертеж к примеру 3

На рисунке 3 отрезки АВ и АС равны. Угол 1 равен углу 2. Известно, что АС = 15 см, DC = 5 см. Доказать, что . Найдите длины отрезков BD и АВ.

Треугольники равны по первому признаку, ведь ∠1 = ∠2, АВ = АС, а AD - общая сторона у обоих треугольников. Из равенства треугольников следует равенство некоторых их соответствующих элементов, поэтому: BD = CD = 5 см,

АВ = АС = 15 см.

Ответ: 5 см, 15 см.

На рисунке 5 ВС = AD. Угол 1 равен углу 2, AD = 17 см, CD = 14 см. Доказать, что . Найдите АВ и ВС.

Рис. 5. Чертеж к примеру 4

Треугольник АВС равен треугольнику СDА. по первому признаку. ∠1 = ∠2, СВ = АD, а AC - общая сторона у обоих треугольников. Из этого следует, что , .

  1. Тема урока "Первый признак равенства треугольников"
  2. Треугольник. Справочник

1. № 36. Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. - М.: Просвещение, 2010.

2. Докажите, что треугольники ВОА и ЕОС равны. Отрезки ВЕ и AС точкой пересечения делятся пополам.

3. Докажите, что прямая, отсекающая от сторон угла равные отрезки, перпендикулярна его биссектрисе.

4. *На сторонах угла М отложены равные отрезки МА и МС и проведена его биссектриса, на которой отмечена точка В. Докажите, что ВМ является биссектрисой угла АВС.

1) по двум сторонам и углу между ними

Доказательство:

Пусть у треугольников АВС и А 1 В 1 С 1 угол A равен углу А 1 , АВ равно А 1 В 1, АС равно А 1 С 1 . Докажем, что треугольники равны.

Наложим треугольник ABC (либо симметричный ему) на треугольник A 1 B 1 C 1 так, чтобы угол A совместился с углом A 1 . Так как АВ=А 1 В 1 , а АС=А 1 С 1 , то B совпадёт с В 1 , а C совпадёт с С 1. Значит, треугольник А 1 В 1 С 1 совпадает с треугольником АВС, а следовательно, равен треугольнику АВС.

Теорема доказана.

2) по стороне и прилежащим к ней углам

Доказательство:

ПустьАВС и А 1 В 1 С 1 - два треугольника, у которых АВ равно А 1 В 1, угол А равен углу А 1 , и угол В равен углу В 1 . Докажем, что они равны.

Наложим треугольник ABC (либо симметричный ему) на треугольник A 1 B 1 C 1 так, чтобы AB совпало с A 1 B 1. Так как ∠ВАС =∠В 1 А 1 С 1 и ∠АВС=∠А 1 В 1 С 1 , то луч АС совпадёт с А 1 С 1 , а ВС совпадёт с В 1 С 1 . Отсюда следует, что вершина C совпадёт с С 1. Значит, треугольник А 1 В 1 С 1 совпадает с треугольником АВС, а следовательно, равен треугольнику АВС.

Теорема доказана.

3) по трём сторонам

Доказательство :

Рассмотрим треугольники ABC и A l B l C 1, у которых АВ=А 1 В 1 , BC = B l C 1 СА=С 1 А 1. Докажем, что ΔАВС =ΔA 1 B 1 C 1 .

Приложим треугольник ABC (либо симметричный ему) к треугольнику A 1 B 1 C 1 так, чтобы вершина А совместилась с вершиной A 1 , вершина В — с вершиной В 1 , а вершины С и С 1 , оказались по разные стороны от прямой А 1 В 1 . Рассмотрим 3 случая:

1) Луч С 1 С про-ходит внутри угла А 1 С 1 В 1 . Так как по условию теоремы стороны АС и A 1 C 1 , ВС и В 1 С 1 равны, то треугольники A 1 C 1 C и В 1 С 1 С — равнобедренные . По теореме о свойстве углов равнобедренного треугольника ∠1 = ∠2, ∠3 = ∠4, поэтому ∠ACB=∠A 1 C 1 B 1 .

2) Луч С 1 С совпадает с одной из сторон этого угла. A лежит на CC 1 . AC=A 1 C 1 , BC=B 1 C 1 , C 1 BC - равнобедренный , ∠ACB=∠A 1 C 1 B 1 .

3) Луч C 1 C проходит вне угла А 1 С 1 В 1 . AC=A 1 C 1 , BC=B 1 C 1 , значит, ∠1 = ∠2, ∠1+∠3 = ∠2+∠4, ∠ACB=∠A 1 C 1 B 1 .

Итак, AC=A 1 C 1 , BC=B 1 C 1 , ∠C=∠C 1 . Следовательно, треугольники ABC и A 1 B 1 C 1 равны по
первому признаку равенства треугольников.

Теорема доказана.

2. Деление отрезка на n равных частей.

Провести луч через A, отложить на нём n равных отрезков. Через B и A n провести прямую и к ней параллельные через точки A 1 - A n -1. Отметим их точки пересечения с AB. Получим n отрезков, которые равны по теореме Фалеса.

Теорема Фалеса. Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.


Доказательство. AB=CD

1. Проведём через точки A и C прямые, параллельные другой стороне угла. Получим два параллелограмма AB 2 B 1 A 1 и CD 2 D 1 C 1 . Согласно свойству параллелограмма : AB 2 = A 1 B 1 и CD 2 = C 1 D 1 .

2. ΔABB 2 =ΔCDD 2 ABB 2 CDD 2 BAB 2 DCD 2 и равны на основании второго признака равенства треугольников:
AB = CD согласно условию теоремы,
как соответственные, образовавшиеся при пересечении параллельных BB 1 и DD 1 прямой BD.

3. Аналогично каждый из углов и оказывается равным углу с вершиной в точке пересечения секущих. AB 2 = CD 2 как соответственные элементы в равных треугольниках.

4. A 1 B 1 = AB 2 = CD 2 = C 1 D 1

Среди огромного количества многоугольников, которые по сути являются замкнутой непересекающейся ломаной линией, треугольник - это фигура с наименьшим количеством углов. Другими словами, это простейший многоугольник. Но, несмотря на всю свою простоту, эта фигура таит в себе много загадок и интересных открытий, которые освещаются особым разделом математики - геометрией. Эту дисциплину в школах начинают преподавать с седьмого класса, и теме «Треугольник» здесь уделяется особое внимание. Дети не только узнают правила о самой фигуре, но и сравнивают их, изучая 1, 2 и 3 признак равенства треугольников.

Первое знакомство

Один из первых правил, с которым знакомятся школьники, звучит примерно так: сумма величин всех углов треугольника равняется 180 градусам. Чтобы это подтвердить, достаточно при помощи транспортира измерить каждую из вершин и сложить все получившиеся значения. Исходя из этого, при двух известных величинах легко определить третью. Например : В треугольнике один из углов равен 70°, а другой - 85°, какова величина третьего угла?

180 - 85 - 70 = 25.

Ответ: 25°.

Задачи могут быть и более сложными, если указано лишь одно значение угла, а про вторую величину сказано лишь, на сколько или во сколько раз она больше или меньше.

В треугольнике для определения тех или иных его особенностей могут быть проведены особые линии, каждая из которых имеет свое название:

  • высота - перпендикулярная прямая, проведенная из вершины к противоположной стороне;
  • все три высоты, проведенные одновременно, в центре фигуры пересекаются, образуя ортоцентр, который в зависимости от вида треугольника может находиться как внутри, так и снаружи;
  • медиана - линия, соединяющая вершину с серединой противолежащей стороны;
  • пересечение медиан является точкой его тяжести, находится внутри фигуры;
  • биссектриса - линия, проходящая от вершины до точки пересечения с противолежащей стороной, точка пересечения трех биссектрис является центром вписанной окружности.

Простые истины о треугольниках

Треугольники, как, собственно, и все фигуры, имеют свои особенности и свойства. Как уже говорилось, эта фигура является простейшим многоугольником, но со своими характерными признаками:

  • против самой длинной стороны всегда лежит угол с большей величиной, и наоборот;
  • против равных сторон лежат равные углы, пример тому - равнобедренный треугольник;
  • сумма внутренних углов всегда равна 180°, что уже было продемонстрировано на примере;
  • при продлении одной стороны треугольника за его пределы образуется внешний угол, который всегда будет равен сумме углов, с ним не смежных;
  • любая из сторон всегда меньше суммы двух других сторон, но больше их разницы.

Виды треугольников

Следующий этап знакомства заключается в определении группы, к которой относится представленный треугольник. Принадлежность к тому или иному виду зависит от величин углов треугольника.

  • Равнобедренный - с двумя равными сторонами, которые называют боковыми, третья в этом случае выступает основанием фигуры. Углы у основания такого треугольника одинаковы, а медиана, проведенная из вершины, является биссектрисой и высотой.
  • Правильный, или равносторонний треугольник, - это тот, у которого все его стороны равны.
  • Прямоугольный: один из его углов равен 90°. В этом случае сторона, противолежащая этому углу, называется гипотенузой, а две другие - катетами.
  • Остроугольный треугольник - все углы меньше 90°.
  • Тупоугольный - один из углов больше 90°.

Равенство и подобие треугольников

В процессе обучения не только рассматривают отдельно взятую фигуру, но и сравнивают два треугольника. И эта, казалось бы, простая тема имеет массу правил и теорем, по которым можно доказать что рассматриваемые фигуры - равные треугольники. Признаки равенства треугольников имеют такое определение: треугольники равны, если их соответствующие стороны и углы одинаковы. При таком равенстве, если наложить эти две фигуры друг на друга, все их линии сойдутся. Также фигуры могут быть подобными, в частности, это касается практически одинаковых фигур, отличающихся лишь величиной. Для того чтобы сделать такое заключение о представленных треугольниках, необходимо соблюдение одного из следующих условий:

  • два угла одной фигуры равны двум углам другой;
  • две стороны одного пропорциональны двум сторонам второго треугольника, а величины углов, образованных сторонами, равны;
  • три стороны второй фигуры такие же, как и у первой.

Конечно, для бесспорного равенства, которое не вызовет ни малейшего сомнения, необходимо иметь одинаковые значения всех элементов обеих фигур, однако с использованием теорем задача значительно упрощается, и для доказательства равенства треугольников допускается наличие лишь нескольких условий.

Первый признак равенства треугольников

Задачи по этой теме решаются на основе доказательства теоремы, которая звучит так: "Если две стороны треугольника и угол, который они образуют, равны двум сторонам и углу другого треугольника, то и фигуры тоже равны между собой".

Как же звучит доказательство теоремы про первый признак равенства треугольников? Всем известно, что два отрезка равны, если они одной длины, или окружности равны, если имеют одинаковый радиус. А в случае с треугольниками есть несколько признаков, имея которые, можно предположить, что фигуры идентичны, что очень удобно использовать при решении разных геометрических задач.

Как звучит теорема «Первый признак равенства треугольников», описано выше, а вот ее доказательство:

  • Допустим, треугольники АВС и А 1 В 1 С 1 имеют одинаковые стороны АВ и А 1 В 1 и, соответственно, ВС и В 1 С 1 , а углы, которые образуются этими сторонами, имеют одну и ту же величину, то есть равны. Тогда, наложив △ ABC на △ А 1 В 1 С 1, получим совпадение всех линий и вершин. Отсюда вытекает, что эти треугольники абсолютно идентичны, а значит, равны между собой.

Теорему «Первый признак равенства треугольников» называют еще «По двум сторонам и углу». Собственно, в этом и заключается ее суть.

Теорема о втором признаке

Второй признак равенства доказывается аналогично, доказательство основывается на том, что при наложении фигур друг на друга они полностью совпадают по всем вершинам и сторонам. А звучит теорема так: "Если одна сторона и два угла, в образовании которых она участвует, соответствуют стороне и двум углам второго треугольника, то эти фигуры идентичны, то есть равны".

Третий признак и доказательство

Если как 2, так и 1 признак равенства треугольников касался как сторон, так и углов фигуры, то 3-й относится лишь к сторонам. Итак, теорема имеет следующую формулировку: "Если все стороны одного треугольника равны трем сторонам второго треугольника, то фигуры идентичны".

Чтобы доказать эту теорему, нужно более детально углубиться в само определение равенства. По сути, что означает выражение «треугольники равны»? Идентичность говорит о том, что если наложить одну фигуру на другую, все их элементы совпадут, это может быть только в том случае, когда их стороны и углы будут равны. В то же время угол, противолежащий одной из сторон, которая такая же, как у другого треугольника, будет равен соответствующей вершине второй фигуры. Следует отметить, что в этом месте доказательство легко перевести на 1 признак равенства треугольников. В случае если такая последовательность не наблюдается, равенство треугольников просто невозможно, за исключением тех случаев, когда фигура является зеркальным отражением первой.

Прямоугольные треугольники

В строении таких треугольников всегда есть вершины с величиной угла 90°. Поэтому справедливы следующие утверждения:

  • треугольники с прямым углом равны, если катеты одного идентичны катетам второго;
  • фигуры равны, если равны их гипотенузы и один из катетов;
  • такие треугольники равны, если их катеты и острый угол идентичны.

Этот признак относится к Для доказательства теоремы применяют приложение фигур друг к другу, в результате которого треугольники складывают катетами так, чтобы из двух прямых вышел со сторонами СА и СА 1 .

Практическое применение

В большинстве случаев на практике применяется первый признак равенства треугольников. На самом деле такая, казалось бы, простая тема 7 класса по геометрии и планиметрии используется и для вычисления длины, например, телефонного кабеля без замеров местности, по которой он будет проходить. При помощи этой теоремы легко сделать необходимые расчеты для определения длины острова, находящегося посреди реки, не переплывая на него. Либо укрепить забор, расположив планку в пролете так, чтобы она делила его на два равных треугольника, или же рассчитать сложные элементы работы в столярном деле, или при расчете стропильной системы крыши во время строительства.

Первый признак равенства треугольников имеет широкое применение в реальной «взрослой» жизни. Хотя в школьные годы именно эта тема для многих кажется скучной и совершенно ненужной.