Агрегатные состояния вещества и их основные признаки. Что такое агрегатное состояние вещества

Цели урока:

  • углубить и обобщить знания об агрегатных состояниях вещества, изучить в каких состояниях могут находиться вещества.

Задачи урока:

Обучающие – сформулировать представление о свойствах твёрдых тел, газов, жидкостей.

Развивающие – развитие учащихся навыков речи, анализа, выводы по пройденному и изученному материалу.

Воспитательные – привитие умственного труда, создание всех условий,для повышения интереса к изученному предмету.

Основные термины:

Агрегатное состояние - это состояние вещества, которое характеризуется определёнными качественными свойствами: - способность или неспособность сохранять форму и объём; - наличие или отсутствие ближнего и дальнего порядка; - другими.

Рис.6. Агрегатное состояние вещества при изменении температуры.

Когда вещество из твёрдого состояния переходит в жидкое, то это называется плавлением, обратный процесс – кристаллизацией. При переходе вещества из жидкости в газ, этот процесс называется парообразованием, в жидкость из газа – конденсацией. А переход сразу в газ из твёрдого тела, минуя жидкое – сублимацией, обратный процесс – десублимацией.

1.Кристаллизация; 2. Плавление; 3. Конденсация; 4. Парообразование;

5. Сублимация; 6. Десублимация.

Эти примеры переходов мы постоянно наблюдаем в повседневной жизни. Когда лед плавится, он превращается в воду, а вода в свою очередь испаряется, и образовывается пара. Если рассматривать в обратную сторону то, пар, конденсируясь, начинает переходить снова в воду, а вода в свою очередь, замерзая, становится льдом. Запах любого твёрдого тела – это сублимация. Часть молекул вырывается из тела, при этом образовывается газ, который и даёт запах. Пример обратного процесса – это в зимнее время узоры на стекле, когда пар в воздухе при замерзании оседает на стекле.

На видео показано изменение агрегатных состояний вещества.

Контролирующий блок.

1.После замерзания, вода превратилась в лёд. Изменились, ли при этом молекулы воды?

2.В помещении пользуются медицинским эфиром. И из-за этого обычно им сильно там пахнет. В каком состоянии находится эфир?

3.Что происходит с формой жидкости?

4.Лёд. Это какое состояние воды?

5.Что происходит когда замерзает вода?

Домашнее задание.

Ответить на вопросы:

1.Можно ли на половину объёма сосуда заполнить его газом? Почему?

2.Могут ли быть при комнатной температуре в жидком состоянии: азот и кислород?

3.Могут ли быть при комнатной температуре в газообразном состоянии: железо и ртуть?

4.В морозный зимний день над рекой образовался туман. Какое это состояние вещества?

Мы считаем, что у вещества существует три агрегатных состояния. На самом же деле их как минимум пятнадцать, при этом список этих состояний продолжает расти с каждым днём. Это: аморфное твёрдое, твёрдое, нейтрониум, кварк-глюонная плазма, сильно симметричное вещество, слабо симметричное вещество, фермионный конденсат, конденсат Бозе-Эйнштейна и странное вещество.

Агрегатным состоянием вещества принято называть его способность сохранять свою форму и объем. Дополнительный признак – способы перехода вещества их одного агрегатного состояния в другое. Исходя из этого, выделяют три агрегатных состояния: твердое тело, жидкость и газ. Видимые свойства их таковы:

Твердое тело – сохраняет и форму, и объем. Может переходить как в жидкость путем плавления, так и непосредственно в газ путем сублимации.
- Жидкость – сохраняет объем, но не форму, то есть обладает текучестью. Пролитая жидкость стремится неограниченно растечься по поверхности, на которую вылита. В твердое тело жидкость может перейти путем кристаллизации, а в газ – путем испарения.
- Газ – не сохраняет ни формы, ни объема. Газ вне какого-нибудь вместилища стремится неограниченно расшириться во все стороны. Помешать ему в этом может только сила тяжести, благодаря чему земная атмосфера не рассеивается в космос. В жидкость газ переходит путем конденсации, а непосредственно в твердое тело может перейти путем осаждения.

Фазовые переходы

Переход вещества из одного агрегатного состояния в другое называется фазовым переходом, так как научный агрегатного состояния – фаза вещества. Например, вода может существовать в твердой фазе (лед), жидкой (обычная вода) и газообразной (водяной пар).

На примере воды также хорошо демонстрируется . Вывешенное во дворе на просушку в морозный безветренный день тут же промерзает, но спустя некоторое время оказывается сухим: лед сублимирует, непосредственно переходя в водяной пар.

Как правило, фазовый переход из твердого тела в жидкость и газ требует нагрева, но температура среды при этом не повышается: тепловая энергия уходит на разрыв внутренних связей в веществе. Это так называемая скрытая теплота . При обратных фазовых переходах (конденсации, кристаллизации) эта теплота выделяется.

Именно поэтому так опасны ожоги паром. Попадая на кожу, он конденсируется. Скрытая теплота испарения/конденсации воды очень велика: вода в этом отношении – аномальное вещество; именно поэтому и возможна жизнь на Земле. При ожоге паром скрытая теплота конденсации воды «прошпаривает» обожженное место очень глубоко, и последствия парового ожога оказываются куда тяжелее, чем от пламени на такой же площади тела.

Псевдофазы

Текучесть жидкой фазы вещества определяется ее вязкостью, а вязкость – характером внутренних связей, которым посвящен следующий раздел. Вязкость жидкости может быть очень высокой, и такая жидкость может течь незаметно для глаза.

Классический пример – стекло. Оно не твердое тело, а очень вязкая жидкость. Обратите внимание, что листы стекла на складах никогда не хранят прислоненными наискось к стене. Уже через несколько дней они прогнутся под собственной тяжестью и окажутся непригодными к употреблению.

Другие псевдотвердых тел – сапожный вар и строительный . Если забыть угловатый кусок на крыше, за лето он растечется в лепешку и прилипнет к основе. Псевдотвердые тела отличить от настоящих можно по характеру плавления: настоящие при нем либо сохраняют свою форму, пока враз не растекутся (припой при ), либо оплывают, пуская лужицы и ручейки (лед). А очень вязкие жидкости постепенно размягчаются, как тот же вар или битум.

Чрезвычайно вязкими жидкостями, текучесть которых не заметна на протяжении многих лет и десятилетий, являются пластики. Высокая их способность сохранять форму обеспечивается огромным молекулярным весом полимеров, во многие тысячи и миллионы атомов водорода.

Структура фаз вещества

В газовой фазе молекулы или атомы вещества отстоят друг от друга очень далеко, во много раз больше, чем расстояние между ними. Взаимодействуют они между собой изредка и нерегулярно, только при столкновениях. Само взаимодействие упругое: столкнулись, как твердые шарики, и тут же разлетелись.

В жидкости молекулы/атомы постоянно «чувствуют» друг друга за счет очень слабых связей химической природы. Эти связи все время рвутся и тут же опять восстанавливаются, молекулы жидкости непрерывно перемещаются относительно друг друга, поэтому жидкость и течет. Но чтобы превратить ее в газ, нужно разорвать все связи сразу, а на это нужно очень много энергии, потому жидкость и сохраняет объем.

Вода в этом отношении отличается от прочих веществ тем, что ее молекулы в жидкости связаны так называемыми водородными связями, довольно прочными. Поэтому вода и может быть жидкостью при нормальной для жизни температуре. Многие вещества с молекулярной массой в десятки и сотни раз больше, чем у воды, в нормальных условиях – газы, как хотя бы обычный бытовой газ.

В твердом теле все его молекулы прочно стоят на своих местах благодаря сильным химическим связям между ними, образуя кристаллическую решетку. Кристаллы правильной формы требуют для своего роста особых условий и потому в природе встречаются редко. Большинство твердых тел представляют собой прочно сцепленные силами механической и электрической природы конгломераты мелких и мельчайших кристалликов – кристаллитов.

Если читателю доводилось видеть, например, треснувшую полуось автомобиля или чугунный колосник, то зерна кристаллитов на сломе там видны простым глазом. А на осколках разбитой фарфоровой или фаянсовой посуды их можно наблюдать под лупой.

Плазма

Физики выделяют и четвертое агрегатное состояние вещества – плазму. В плазме электроны оторваны от атомных ядер, и она представляет собой смесь электрически заряженных частиц. Плазма может быть очень плотной. Например, один кубический сантиметр плазмы из недр звезд – белых карликов, весит десятки и сотни тонн.

Плазму выделяют в отдельное агрегатное состояние потому, что она активно взаимодействует с электромагнитными полями из-за того, что ее частицы заряжены. В свободном пространстве плазма стремится расшириться, остывая и переходя в газ. Но под воздействием она может вне сосуда сохранять форму и объем, как твердое тело. Это свойство плазмы используется в термоядерных энергетических реакторах – прообразах энергоустановок будущего.

Агрегатные состояния вещества (от латинского aggrego - присоединяю, связываю) - это состояния одного и того же вещества, переходам между которыми соответствуют скачкообразные изменения свободной энергии, плотности и других физических параметров вещества.
Газ (французское gaz, происшедшее от греческого chaos - хаос) - это агрегатное состояние вещества , в котором силы взаимодействия его частиц, заполняющих весь предоставленный им объем, пренебрежимо малы. В газах межмолекулярные расстояния велики и молекулы движутся практически свободно.

Газы можно рассматривать как значительно перегретые или малонасыщенные пары. Над поверхностью каждой жидкости вследствие находится пар. При повышении давления пара до определенного предела, называемого давлением насыщенного пара, испарение жидкости прекращается, так как и жидкости становится одинаковым. Уменьшение объема насыщенного пара вызывает части пара, а не повышение давления. Поэтому давление пара не может быть выше . Состояние насыщения характеризуется массой насыщения, содержащейся в 1м массой насыщенного пара, которая зависит от температуры. Насыщенный пар может стать ненасыщенным, если увеличивать его объем или повышать температуру. Если температура пара много выше точки , соответствующей данному давлению, пар называется перегретым.

Плазмой называется частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Солнце, звезды, облака межзвездного вещества состоят из газов - нейтральных или ионизованных (плазмы). В отличие от других агрегатных состояний плазма представляет собой газ заряженных частиц (ионов, электронов), которые электрически взаимодействуют друг с другом на больших расстояниях, но не обладают ни ближним, ни дальним порядками в расположении частиц.

Жидкость - это агрегатное состояние вещества, промежуточное между твердым и газообразным. Жидкостям присущи некоторые черты твердого вещества (сохраняет свой объем, образует поверхность, обладает определенной прочностью на разрыв) и газа (принимает форму сосуда, в котором находится). Тепловое движение молекул (атомов) жидкости представляет собой сочетание малых колебаний около положений равновесия и частых перескоков из одного положения равновесия в другое. Одновременно происходят медленные перемещения молекул и их колебания внутри малых объемов, частые перескоки молекул нарушают дальний порядок в расположении частиц и обусловливают текучесть жидкостей, а малые колебания около положений равновесия обусловливают существование в жидкостях ближнего порядка.

Жидкости и твердые вещества, в отличие от газов, можно рассматривать как высоко конденсированные среды. В них молекулы (атомы) расположены значительно ближе друг к другу и силы взаимодействия на несколько порядков больше, чем в газах. Поэтому жидкости и твердые вещества имеют существенно ограниченные возможности для расширения, заведомо не могут занять произвольный объем, а при постоянных сохраняют свой объем, в каком бы объеме их не размещали. Переходы из более упорядоченного по структуре агрегатного состояния в менее упорядоченное могут происходить и непрерывно. В связи с этим вместо понятия агрегатного состояния целесообразно пользоваться более широким понятием - понятием фазы.

Фазой называется совокупность всех частей системы, обладающих одинаковым химическим составом и находящихся в одинаковом состоянии. Это оправдано одновременным существованием термодинамически равновесных фаз в многофазной системе: жидкости со своим насыщенным паром; воды и льда при температуре плавления; двух несмешивающихся жидкостей (смесь воды с триэтиламином), отличающихся концентрациями; существованием аморфных твердых веществ, сохраняющих структуру жидкости (аморфное состояние).

Аморфное твердое состояние вещества является разновидностью переохлажденного состояния жидкости и отличается от обычных жидкостей существенно большей вязкостью и численными значениями кинетических характеристик.
Кристаллическое твердое состояние вещества - это агрегатное состояние, которое характеризуется большими силами взаимодействия между частицами вещества (атомами, молекулами, ионами). Частицы твердых тел совершают колебания около средних равновесных положений, называемых узлами кристаллической решетки; структура этих веществ характеризуется высокой степенью упорядоченности (дальним и ближним порядком) - упорядоченностью в расположении (координационный порядок), в ориентации (ориентационный порядок) структурных частиц, или упорядоченностью физических свойств (например, в ориентации магнитных моментов или электрических дипольных моментов). Область существования нормальной жидкой фазы для чистых жидкостей, жидкого и жидких кристаллов ограничена со стороны низких температур фазовыми переходами соответственно в твердое (кристаллизацией), сверхтекучее и жидко-анизотропное состояние.

Любое вещество состоит из молекул, а его физические свойства зависят от того, каким образом упорядочены молекулы и как они взаимодействуют между собой. В обычной жизни мы наблюдаем три агрегатных состояния вещества - твердое, жидкое и газообразное.

Например, вода может находиться в твердом (лед), жидком (вода) и газообразном (пар) состояниях.

Газ расширяется, пока не заполнит весь отведенный ему объем. Если рассмотреть газ на молекулярном уровне, мы увидим беспорядочно мечущиеся и сталкивающиеся между собой и со стенками сосуда молекулы, которые, однако, практически не вступают во взаимодействие друг с другом. Если увеличить или уменьшить объем сосуда, молекулы равномерно перераспределятся в новом объеме.

В отличие от газа при заданной температуре занимает фиксированный объем, однако и она принимает форму заполняемого сосуда - но только ниже уровня ее поверхности. На молекулярном уровне жидкость проще всего представить в виде молекул-шариков, которые хотя и находятся в тесном контакте друг с другом, однако имеют свободу перекатываться друг относительно друга, подобно круглым бусинам в банке. Налейте жидкость в сосуд - и молекулы быстро растекутся и заполнят нижнюю часть объема сосуда, в результате жидкость примет его форму, но не распространится в полном объеме сосуда.

Твердое тело имеет собственную форму, не растекается по объему контейнера и не принимает его форму. На микроскопическом уровне атомы прикрепляются друг к другу химическими связями, и их положение друг относительно друга фиксировано. При этом они могут образовывать как жесткие упорядоченные структуры - кристаллические решетки, - так и беспорядочное нагромождение - аморфные тела (именно такова структура полимеров, которые похожи на перепутанные и слипшиеся макароны в миске).

Выше были описаны три классических агрегатных состояния вещества. Имеется, однако, и четвертое состояние, которые физики склонны относить к числу агрегатных. Это плазменное состояние. Плазма характеризуется частичным или полным срывом электронов с их атомных орбит, при этом сами свободные электроны остаются внутри вещества.

Изменение агрегатных состояний вещества мы можем наблюдать воочию в природе. Вода с поверхности водоемов испаряется, и образуются облака. Так жидкость переходит в газ. Зимой вода в водоемах замерзает, переходя в твердое состояние, а весной вновь тает, переходя в обратно в жидкость. Что происходит с молекулами вещества при переходе его из одного состояния в другое? Меняются ли они? Отличаются ли, например, молекулы льда от молекул пара? Ответ однозначный: нет. Молекулы остаются абсолютно теми же. Меняется их кинетическая энергия, а соответственно и свойства вещества.

Энергия молекул пара достаточно велика, чтобы разлетаться в разные стороны, а при охлаждении пар конденсируется в жидкость, и энергии у молекул все еще достаточно для почти свободного перемещения, но уже недостаточно, чтобы оторваться от притяжения других молекул и улететь. При дальнейшем охлаждении вода замерзает, становясь твердым телом, и энергии молекул уже недостаточно даже для свободного перемещения внутри тела. Они колеблются около одного места, удерживаемые силами притяжения других молекул.

Для того чтобы понять, что такое агрегатное состояние вещества, вспомните или представьте себя летом возле речки с мороженным в руках. Замечательная картинка, правда?

Так вот, в этой идиллии кроме получения удовольствия можно еще осуществить физическое наблюдение. Обратите внимание на воду. В реке она жидкая, в составе мороженного в виде льда - твердая, а в небе в виде облаков - газообразная. То есть она находится одновременно в трех различных состояниях. В физике это называется агрегатным состоянием вещества. Различают три агрегатных состояния - твердое, жидкое и газообразное.

Изменение агрегатных состояний вещества

Изменение агрегатных состояний вещества мы можем наблюдать воочию в природе. Вода с поверхности водоемов испаряется, и образуются облака. Так жидкость переходит в газ. Зимой вода в водоемах замерзает, переходя в твердое состояние, а весной вновь тает, переходя в обратно в жидкость. Что происходит с молекулами вещества при переходе его из одного состояния в другое? Меняются ли они? Отличаются ли, например, молекулы льда от молекул пара? Ответ однозначный: нет. Молекулы остаются абсолютно теми же. Меняется их кинетическая энергия , а соответственно и свойства вещества. Энергия молекул пара достаточно велика, чтобы разлетаться в разные стороны, а при охлаждении пар конденсируется в жидкость, и энергии у молекул все еще достаточно для почти свободного перемещения, но уже недостаточно, чтобы оторваться от притяжения других молекул и улететь. При дальнейшем охлаждении вода замерзает, становясь твердым телом, и энергии молекул уже недостаточно даже для свободного перемещения внутри тела. Они колеблются около одного места, удерживаемые силами притяжения других молекул.

Характер движения и состояния молекул в различных агрегатных состояниях вещества можно отразить на следующей таблице:

Агрегатное состояние вещества

Свойства вещества

Расстояние между частицами

Взаимодействие частиц

Характер движения

Порядок расположения

Не сохраняет форму и объем

Гораздо больше размеров самих частиц

Хаотическое (беспорядочное) непрерывное. Свободно летают, иногда сталкиваясь.

Беспорядочное

Жидкость

Не сохраняет форму, сохраняет объем

Сравнимо с размерами самих частиц

Колеблются около положения равновесия, постоянно перескакивая с одного места на другое.

Беспорядочное

Твердое тело

Сохраняет форму и объем

Мало по сравнению с размерами самих частиц

Очень сильное

Непрерывно колеблются около положения равновесия

В определенном порядке

Процессов, в которых происходит изменение агрегатных состояний веществ, всего шесть.

Переход вещества из твердого состояния в жидкое называется плавлением , обратный процесс - кристаллизацией . Когда вещество переходит из жидкости в газ, это называется парообразованием , из газа в жидкость - конденсацией . Переход из твердого состояния сразу в газ, минуя жидкое, называют сублимацией , обратный процесс - десублимацией .

  • 1. Плавление
  • 2. Кристаллизация
  • 3. Парообразование
  • 4. Конденсация
  • 5. Сублимация
  • 6. Десублимация

Примеры всех этих переходов мы с вами не раз наблюдали в жизни. Лед плавится, образуя воду, вода испаряется, образуя пар. В обратную сторону пар, конденсируясь, переходит снова в воду, а вода, замерзая, становится льдом. А если вы думаете, что вы не знаете процессов сублимации и десублимации, то не спешите с выводами. Запах любого твердого тела - это и есть не что иное, как сублимация. Часть молекул вырывается из тела, образуя газ, который мы и можем унюхать. А пример обратного процесса - это узоры на стеклах зимой, когда пар в воздухе, замерзая, оседает на стекле и образует причудливые узоры.