Закон ампера его практическое значение. Что такое сила Ампера? Что такое сила ампера

Трудно представить нашу современную жизнь без электричества, ведь исчезни оно, это бы мгновенно привело к глобальным катастрофическим последствиям. Так что в любом случае с электричеством мы отныне не разлучные. А вот для того, чтобы иметь с ним дело нужно знать определенные физические законы, одним из которых, безусловно, является закон Ампера. А пресловутая магнитная сила Ампера – главная составляющая этого закона.

Закон Ампера

Итак, давайте сформулируем закон Ампера: в параллельных проводниках, где электрические токи текут в одном направление, появляется сила притяжения. А в проводниках, где токи текут в противоположных направлениях, наоборот возникает сила отталкивания. Если же говорить простым житейским языком, то закон Ампера можно сформулировать предельно просто «противоположности притягиваются», и ведь в реальной жизни (а не только физике) мы наблюдаемо подобное явление, не так ли?

Но вернемся к физике, в ней также под законом Ампера понимают закон, определяющий силу действия магнитного поля на ту часть проводника, по которой протекает ток.

Что такое сила Ампера

Собственно сила ампера и является той силой действия магнитного поля на проводник, по которому идет ток. Сила Ампера вычисляется по формуле как результат умножения плотности тока, идущего по проводнику на индукцию магнитного поля, в котором находится проводник. Как результат формула силы Ампера будет выглядеть так

са=ст*дчп*ми

Где, са – сила Ампера, ст – сила тока, дчп – длина части проводника, ми – магнитная индукция.

Правило левой руки

Правило левой руки предназначено для того, чтобы помочь запомнить, куда направлена сила Ампера. Оно звучит следующим образом: если рука занимает такое положение, что линии самой магнитной индукции внешнего поля заходят в ладонь, а пальцы с мизинца по указательный указывают направление в сторону движения тока в проводнике, то отторгнутый под углом в 90 градусов большой палец ладони и будет указывать, куда направлена сила Ампера, действующая на элемент проводника.

Примерно так выглядит правило левой руки на этой схеме.

Применение силы Ампера

Применение силы Ампера в современном мире очень широкое, можно даже без преувеличение сказать, что мы буквально окружены силой Ампера. Например, когда вы едете в трамвае, троллейбусе, электромобиле, его в движение приводит именно она, сила Ампера. Аналогичны лифты, электрические ворота, двери, любые электроприборы, все это работает именно благодаря силе Ампера.

Сила Ампера, видео

И в завершение небольшой видео урок о силе Ампера.

В этой статье поговорим о законе Ампера - одном из основных законов электродинамики. Сила Ампера работает сегодня во многих электрических машинах и установках, и именно благодаря силе Ампера в 20-веке стал возможным прогресс, связанный с электрификацией во многих сферах производства. Закон Ампера незыблем по сей день, и продолжает верно служить современному машиностроению. Так давайте же вспомним, кому мы обязаны этим прогрессом, и как все начиналось.

В 1820 году великий французский физик Андре Мари Ампер сообщил о своем открытии. Он рассказал в академии наук о явлении взаимодействия двух проводников с током: проводники с противоположными токами взаимно отталкиваются, а с однонаправленными - взаимно притягиваются. Ампер также предположил, что магнетизм имеет полностью электрическую природу.

Еще некоторое время ученый проводил свои эксперименты, и в конце концов подтвердил свое предположение. Наконец, в 1826 году он опубликовал труд «Теория электродинамических явлений, выведенная исключительно из опыта». С этого момента идея магнитной жидкости была отброшена за ненадобностью, поскольку магнетизм, как оказалось, имеет своей причиной электрические токи.

Ампер заключил, что и постоянные магниты тоже имеют внутри себя электрические токи, круговые молекулярные и атомарные токи, перпендикулярные оси, проходящей через полюса постоянного магнита. Подобно постоянному магниту ведет себя и катушка, по которой течет по спирали ток. Ампер получил полное право на то, чтобы уверенно утверждать: «все магнитные явления сводятся к действиям электрическим».


В процессе своей исследовательской работы, Ампер нашел и связь силы взаимодействия элементов тока с величинами этих токов, нашел он и выражение для данной силы. Ампер указал на то, что силы взаимодействия токов не являются центральными, как например гравитационные. Формула, которую вывел Ампер, входит сегодня в каждый из учебников электродинамики.

Ампер установил, что токи противоположного направления отталкиваются, а токи одного направления притягиваются, если же токи перпендикулярны, то магнитное взаимодействие между ними отсутствует. Таким был итог исследования ученым взаимодействий электрических токов, как истинных первопричин магнитных взаимодействий. Ампер открыл закон механического взаимодействия электрических токов, и решил таким образом проблему магнитных взаимодействий.

Для выяснения закономерностей, по которым силы механического взаимодействия токов связаны с другими величинами, можно и сегодня провести эксперимент, наподобие эксперимента Ампера. Для этого относительно длинный проводник с током I1 закрепляют неподвижно, а короткий проводник с током I2 делают подвижным, допустим, нижняя сторона подвижной рамки с током будет вторым проводником. Рамка соединяется с динамометром для измерения силы F, действующей на рамку, когда проводники с токами располагаются параллельно.

Изначально система уравновешивается, а расстояние R между проводниками экспериментальной установки делается значительно меньшим по сравнению с длиной l этих проводников. Цель эксперимента - измерить силу отталкивания проводников.

Ток, как в неподвижном, так и в подвижном проводниках, можно регулировать посредством реостатов. Варьируя расстояние R между проводниками, изменяя ток в каждом из них можно легко обнаружить зависимости, увидеть, как от тока и от расстояния зависит сила механического взаимодействия проводников.

Если ток I2 в подвижной рамке неизменен, а ток I1 в неподвижном проводнике увеличивать в определенное количество раз, то и сила F взаимодействия проводников возрастет во столько же раз. Аналогичным образом складывается ситуация и в том случае, если ток I1 в неподвижном проводнике неизменен, а ток I2 в рамке изменяется, тогда сила F взаимодействия меняется точно так же, как и при изменении тока I1 в неподвижном проводнике при неизменном токе I2 в рамке. Таким образом, приходим к очевидному выводу - сила взаимодействия проводников F прямо пропорциональна силе тока I1 и силе тока I2.

Если теперь изменять расстояние R между взаимодействующими проводниками, то окажется, что с увеличением этого расстояния, сила F уменьшается, и уменьшается во столько же раз, во сколько увеличено расстояние R. Таким образом, сила механического взаимодействия F проводников с токами I1 и I2 обратно пропорциональна расстоянию R между ними.

Изменяя размер l подвижного проводника легко убедиться и в том, что сила связана и с длиной взаимодействующей стороны прямо пропорционально.

В итоге можно ввести коэффициент пропорциональности и записать:

Эта формула позволяет найти силу F, с которой магнитное поле, порожденное бесконечно длинным проводником с током I1 действует на параллельный ему участок проводника с током I2, при том, что длина участка равна l, а R - расстояние между взаимодействующими проводниками. Данная формула крайне важна при исследованиях магнетизма.

Коэффициент пропорциональности может быть выражен через магнитную постоянную как:

Тогда формула примет вид:

Сила F называется теперь силой Ампера, а закон, определяющий величину этой силы - законом Ампера. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током:

«Сила dF, с которой магнитное поле действует на элемент dl проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока dI в проводнике и векторному произведению элемента длины dl проводника на магнитную индукцию B»:

Очевидно, сила Ампера максимальна когда элемент проводника с током расположен перпендикулярно линиям магнитной индукции В.

Именно благодаря силе Ампера работают сегодня многие электрические машины, в которых проводники с током взаимодействуют друг с другом и с электромагнитным полем. Подавляющее большинство генераторов и моторов так или иначе используют в своей работе силу Ампера. Роторы электродвигателей вращаются в магнитном поле их статоров благодаря силе Ампера.

Электротранспорт: трамваи, электрички, электрокары - все они используют силу Ампера чтобы их колеса в конечном итоге вращались. Электрические замки, двери лифтов и т. д. Динамики, громкоговорители, - в них магнитное поле катушки с током взаимодействует с магнитным полем постоянного магнита, формируя звуковые волны. Наконец, в токамаках благодаря силе Ампера сжимается плазма.

ЗАКОН АМПЕРА - закон взаимодействия постоянных токов. Установлен Андре Мари Ампером в 1820. Из закона Ампера следует, что параллельные проводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположных - отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длины проводника на магнитную индукцию:

Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длины проводника на магнитную индукцию: где α - угол между векторами магнитной индукции и тока.

ПРИМЕНЕНИЕ ЗАКОНА Громкоговоритель служит для возбуждения звуковых волн под действием переменного электрического тока, меняющегося со звуковой частотой. В электродинамическом громкоговорителе (динамике) используется действие магнитного поля постоянного магнита на переменный ток в подвижной катушке.

Схема устройства громкоговорителя показана на рисунке 1. 22, а. Звуковая катушка ЗК располагается в зазоре кольцевого магнита М. С катушкой жестко связан бумажный конус - диафрагма D. Диафрагма укреплена на упругих подвесах, позволяющих ей совершать вынужденные колебания вместе с подвижной катушкой. По катушке проходит переменный электрический ток с частотой, paвной звуковой частоте сигнала с микрофона или с выхода радиоприемника, проигрывателя, магнитофона. Под действием силы Ампера катушка колеблется вдоль оси громкоговорителя ОО 1 (см. рис. 1. 22, а) в такт с колебаниями токa. Эти колебания передаются диафрагме, и поверхность диафрагмы излучает звуковые волны. Первоклассные громкоговорители воспроизводят без значительных искажений звуковые колебания в диапазоне 40- 15 000 Гц. Но такие устройства очень сложны. Поэтому обычно применяют системы из нескольких громкоговорителей, каждый из которых воспроизводит звук в определенном небольшом интервале частот. Общим недостатком всех громкоговорителей является их малый КПД. Они излучают лишь 1 3% проводимой энергии.

Звук в радиоприемнике, проигрывателе и магнитофоне возникает в результате движения катушки с током в поле постоянного магнита. Наряду с электромеханическими громкоговорителями в настоящее время широкое применение получили громкоговорители, основаннью на пьезоэлектрическом эффекте. Этот эффект проявляется в виде деформации некоторых типов кристаллов в электростатическом поле. Две пьезопластинки склеивают. Пластинки подбирают так, что одна из них увеличивается но длине под действием поля, а другая уменьшается (см. рис. 1. 22, б). В результате получают элемент, который сильно изгибается под действием поля и при переменном электрическом поле создает акустическую волну. Пьезогромкоговорители очень удобны в изготовлении и могут быть совсем маленькими. Вследствие этого они нашли широкое применение в радиотелефонах, мобильных телефонах, ноутбуках и микрокомпьютерах. Взаимодействие токов и пьезоэлектрический эффект положены в основу принципа работы современных громкоговорителей.

ЭЛЕКТРОДИНАМОМЕТР ВЕБЕРА Закон Ампера взаимодействия токов, или, что то же самое, магнитных полей, порождаемых этими токами, используют для устройства весьма распространенного типа электроизмерительных приборов магнитоэлектрических приборов. Они имеют легкую рамку с проволокой, укрепленную на упругом подвесе той или иной конструкции, способную поворачиваться в магнитном поле. Родоначальником всех магнитоэлектрических приборов является электродинамометр Вебера (рис. 4).

Именно этот прибор позволил провести классические исследования закона Ампера. Внутри неподвижной катушки У висит на бифилярном подвесе поддерживаемая вилкой llў подвижная катушка C, ось которой перпендикулярна оси неподвижной катушки. При последовательном прохождении тока по катушкам, подвижная катушка стремится стать параллельно неподвижной и поворачивается, закручивая бифилярный подвес. Углы поворота отсчитываются при помощи прикрепленного к раме llў зеркала f.

Действие магнитного поля на проводник с током исследовал экспериментально Андре Мари Ампер (1820 г.). Меняя форму проводников и их расположение в магнитном поле, Ампер сумел определить силу, действующую на отдельный участок проводника с током (элемент тока). В его честь эту силу назвали силой Ампера.

Сила Ампера - это сила, с которой магнитное поле действует на помещенный в него проводник с током.

Согласно экспериментальным данным модуль силы F:

· пропорционален длине проводника l, находящегося в магнитном поле;

· пропорционален модулю индукции магнитного поля B;

· пропорционален силу тока в проводнике I;

· зависит от ориентации проводника в магнитном поле, т.е. от угла α между направлением тока и вектора индукции магнитного поля B⃗ .

Тогда: модуль силы Ампера равен произведению модуля индукции магнитного поля B, в котором находится проводник с током, длины этого проводника l, силы тока I в нем и синуса угла между направлениями тока и вектора индукции магнитного поля ,

где - сила тока в проводнике;

Модуль вектора индукции магнитного поля;

Длина проводника, находящегося в магнитном поле;

Угол между вектором магнитного поля и направлением тока в проводнике.

Этой формулой можно пользоваться:

· если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой;

· если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).

Для определения направления силы Ампера применяют правило левой руки: если ладонь левой руки расположить так, чтобы вектор индукции магнитного поля () входил в ладонь, четыре вытянутых пальца указывали направление тока (), тогда отогнутый на 90° большой палец укажет направление силы Ампера ().


27) Закон Био-Сава-Лапласа и его применение

Закон Био Савара Лапласа определяет величину модуля вектора магнитной индукции в точке выбранной произвольно находящейся в магнитном поле. Поле при этом создано постоянным током на некотором участке.

Формулировка закона Био Савара Лапласа имеет вид: Определяет в точке А индукцию поля , создаваемую элементом проводника с током на расстоянии от него.

Где – вектор, по модулю равный длине элемента проводника и совпадающий по направлению с током; – радиус-вектор, проведенный из элемента проводника в точку А поля; – модуль радиуса-вектора ; – магнитная постоянная ; – Относительная магнитная проницаемость (среды); - Сила тока (текущего по проводнику), размерность в СИ-А

Направление вектора :

Вектор перпендикулярен и и напревлен по касательной к линии магнитной индукции. Направление определяется по правилу правого винта: направление вращения головки винта дает направление , если поступательное движение винта соотвтествует напрвлению тока в элементе.



Применение закона: магнитное поле прямого тока

тока, текущего по тонкому прямому проводу бесконечной длины. В произвольной точке А, удаленной от оси проводника на расстояние R, векторы dB от всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа («к вам»). Поэтому сложение векторов dB можно заменить сложением их модулей. В качестве постоянной интегрирования выберем угол a (угол между векторами dl и r), выразив через него все остальные величины.

>> Применение закона Ампера. Громкоговоритель

§ 5 ПРИМЕНЕНИЕ ЗАКОНА АМПЕРА. ГРОМКОГОВОРИТЕЛЬ

Зная направление и модуль силы, действующей на любой участок проводника с током, можно вычислить суммарную силу, действующую на весь замкнутый проводник. Для этого надо найти сумму сил, действующих на каждый участок проводника с током.

Закон Ампера используют для расчета сил, действующих на проводники с током , во многих технических устройствах. В частности - в электродвигателях, с которыми ны ознакомились в предыдущих классах.

Разберем устройство громкоговорителя.

Громкоговоритель служит для возбуждения звуковых волн под действием переменного электрического тока, меняющегося со звуковой частотой. В электродинамическом громкоговорителе (динамике) используется действие магнитного поля постоянного магнита на переменный ток в подвижной катушке.

Схема устройства громкоговорителя показана на рисунке 1.22, а. Звуковая катушка ЗК располагается в зазоре кольцевого магнита М. С катушкой жестко связан бумажный конус - диафрагма D. Диафрагма укреплена на упругих подвесах, позволяющих ей совершать вынужденные колебания вместе с подвижной катушкой.

По катушке проходит переменный электрический ток с частотой, paвной звуковой частоте сигнала с микрофона или с выхода радиоприемника, проигрывателя, магнитофона. Под действием силы Ампера катушка колеблется вдоль оси громкоговорителя ОО 1 (см. рис. 1.22, а) в такт с колебаниями токa. Эти колебания передаются диафрагме, и поверхность диафрагмы излучает звуковые волны.

Первоклассные громкоговорители воспроизводят без значительных искажений звуковые колебания в диапазоне 40-15 000 Гц. Но такие устройства очень сложны. Поэтому обычно применяют системы из нескольких громкоговорителей, каждый из которых воспроизводит звук в определенном небольшом интервале частот. Общим недостатком всех громкоговорителей является их малый КПД . Они излучают лишь 1 - 3% проводимой энергии.

Звук в радиоприемнике, проигрывателе и магнитофоне возникает в результате движения катушки с током в поле постоянного магнита.

Наряду с электромеханическими громкоговорителями в настоящее время широкое применение получили громкоговорители, основаннью на пьезоэлектрическом эффекте. Этот эффект проявляется в виде деформации некоторых типов кристаллов в электростатическом поле . Две пьезопластинки склеивают. Пластинки подбирают так, что одна из них увеличивается но длине под действием поля, а другая уменьшается (см. рис. 1.22, б). В результате получают элемент, который сильно изгибается под действием поля и при переменном электрическом поле создает акустическую волну. Пьезогромкоговорители очень удобны в изготовлении и могут быть совсем маленькими. Вследствие этого они нашли широкое применение в радиотелефонах, мобильных телефонах, ноутбуках и микрокомпьютерах.

Взаимодействие токов и пьезоэлектрический эффект положены в основу принципа работы современных громкоговорителей.

Укажите направление вектора магнитной индукции, электрического тока и силы Ампера на схеме громкоговорителя (см. рис. 1.22).

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки