Схема работы телевизора с высоким разрешением. Схемы lcd телевизоров

Думаю, многим из вас интересно узнать о том, по какому принципу работает телевизор LED и из каких компонентов он состоит. В наши дни при создании современных телевизионных моделей активно применяется относительно новая технология LED, которая по праву занимает сегодня почетное место на рынке. В этой публикации мы попробуем в деталях рассмотреть устройство LED телевизора заглянув ему во внутрь. Постараемся разобраться в чем особенность строения и что скрывают производители за столь популярной аббревиатурой, которая вызывает не поддельный интерес у потребителей к таким моделям.

Само определение LED (англ. Light-emitting diode) означает светодиодный. Данный термин впервые ввела компания Самсунг в 2007 году с целью продвижения своей новой линейки телевизоров. Это был не маркетинговых ход, а скорее прорыв в IT сфере, так как подсветка уже осуществлялась не лампами, а светодиодами. В последнее время довольно часто подобные LED панели встречаются на улицах городов, вблизи и внутри стадионов, открытых концертах и презентациях. Изображение такого огромного телевизора отличается зернистостью, что обусловлено размерами светодиодов – к сожалению, приблизить их по размеру, например, к пикселю для этих целей пока не получается.

Однако на большом расстоянии зернистость не заметна, а уникальная конструкция дает возможность собирать действительно большие экраны. Но это лишь небольшая часть информации, а все интересное находиться за кулисами. Дело в том, что телевизоры LED в отличии от больших уличных TV панелей представляют из себя совсем другую конструкцию и светодиоды в них используются иначе. На самом деле в таком телевизоре светодиоды играют роль подсветки жидкокристаллической матрицы, а не «выводят» изображение на экран. Но упомянутый принцип положил начало в OLED технологии.

Тип подсветки матрицы у телевизора LED.

Такие модели с жидкокристаллическим экраном в отличии от LCD изделий, где применяются флуоресцентные или люминесцентные лампы (HCFL — горячий и CCFL — холодный катод), подсвечиваются светоизлучающими диодами. Новый тип подсветки ЖК-матрицы в сравнении с LCD позволил уменьшить толщину конструкции и увеличить качество изображения. Основные технические моменты на которые желательно обратить внимание перед покупкой телевизора описаны в и публикации.

Существует несколько типов LED подсветки жидкокристаллической матрицы: ковровая или по другому, прямая (Direct-LED) и краевая, которую еще называют торцевой (Edge-LED).

  • Direct-LED (Full-LED). Ковровый тип подсветки предполагает расположение светоизлучающих диодов по всей площади матрицы. Именно такое расположение светодиодов позволяет получить равномерность подсветки и получить максимальное качественное изображение. Телевизоры с подсветкой Direct-LED имеют насыщенный уровень яркости и хорошую контрастность.
  • Edge-LED. Краевой тип подсветки имеет положительные и отрицательные стороны. Почему? Дело в том, что здесь светоизлучающие диоды располагаются по краям или по бокам, а иногда и по всему периметру матрицы. Излучающий свет диодами попадает на специализированный распределитель, а после на рассеиватель и лишь потом на экран. К сожалению такое расположение светодиодов не дает полноценного локалього затемнения на отдельных участках экрана и хорошего контрастного перехода.

Безусловно торцевая конструкция позволяете уменьшить толщину всего телевизора, но это имеет свои последствия. Во-первых, за счет расположения светодиодов по периметру, а не по площади используется меньше диодов, а значит матрица подсвечивается не должным образом. Во-вторых, получить хорошее распределение света довольно сложно в более тонком корпусе. Как следствие тонкий рассеиватель не справляется с возложенной на него задачей должным образом и на выходе могут образоваться светлые пятна (засветы) на темных участках экрана.

В свою очередь, «безобидные» светлые пятна могут мешать комфортному восприятию видео с экрана телевизора. Следует сказать, что инженерные решения постепенно доводят ее до хорошего уровня.

Отличие подсветки статической от динамической.

Все вышесказанное можно отнести к статической подсветке. Как вы понимаете, здесь диоды излучают свет постоянно и не о каком управлении речи быть не может. Динамическая подсветка напротив дает возможность управлять светом на отдельно взятых участках экрана. Достигается это за счет разделения матрицы на отдельно связанные группы, что в свою очередь позволило управлять яркостью в определенной зоне экрана в зависимости от воспроизводимой сцены. Такой подход в целом дал четкую цветопередачу и относительно глубокий черный цвет при локальном затемнении, снизил энергопотребление и повысило экологичность.

В свою очередь телевизоры могут имеют и динамическую RGB подсветку в ковровом и краевом типе расположения светоизлучающих диодов. Здесь применяются вместо одних «белых» светодиодов красные, зеленые и синие. Кстати, к ним иногда добавляют четвертый белый светоизлучающий диод, что в итоге дает чистый белый цвет на экране телевизора. Светоизлучающие диоды могут располагаться как по одному, так и в группах, состоящих из разных базовых цветов.

Такая матрица с ковровой подсветкой способна воспроизводить на разных участках изображения с необходимой степенью яркости и цветовой гаммой. В итоге изображение получается качественным и сочным в плане яркости. Краевая матрица с RGB подсветкой получается более тонкой, но она неспособна на таком же уровне передать эффекты цветового локального затемнения или цветовой гаммы в целом. В силу расположения светодиодов, матрица просвечивается полностью по всей ширине и длине. Однако, такой телевизор тоже прилично передает весь общий спектр цветов.

Несколько интересных заметок по теме статьи.

Возможно вы знаете, что в основу матрицы входит не только печатная плата, модуль задней подсветки, но и жидкие кристаллы. В зависимости от своего расположения в ячейке, кристаллы могут пропускать свет или не пропускать. Это основополагающий принцип работы жидкокристаллической TV панели на простом языке.

Качество самой матрицы определяют такие характеристики изображения как:

  • контрастность;
  • насыщенность черного цвета;
  • угол обзора;
  • частота обновления и прочие параметры.

Подсветка определяет такие характеристики как:

  • яркость;
  • цветовой диапазон;
  • динамическая контрастность.

Чтобы определить качество изображения, важно рассматривать характеристики жидкокристаллического экрана в комплексе с характеристиками его подсветки. Производители уже давно говорят о том, что применение диодной подсветки помогло в целом увеличить яркость, контрастность и получить более четкое изображение и цветовую гамму.

Желание увеличить цветовой охват и усовершенствовать цветопередачу приводят к тому, что производители телевизоров находят все новые варианты LED подсветки, увеличивая цветовой спектральный диапазон. Постоянно появляются усовершенствованные технологии, которые дают возможность получать изображение более высокого качества.

Стоит понимать разницу между такими понятиями как «количество цветов» и «цветовой охват цвета», отображаемые экраном. Количество цветов указывает на сколько градаций делится цветовой диапазон, определяемый цветовым охватом. Соответственно, большее количество цветов подразумевает большее количество оттенков и тонов, отображаемых экраном.

В заключении хотелось бы отметить, что:

  1. Принцип работы LED телевизора основан на светодиодах.
  2. LED телевизоры, в отличие от ламповых собратьев, имеют лучшую яркость, контрастность и цветопередачу.
  3. Светодиоды работаю дольше ламп, не содержат ртути, а также потребляют меньше энергии (до 40%).
  4. LED модели — это тонкие ЖК телевизоры, особенно при использовании торцевой подсветки, но это увеличивает вероятность засветов.
  5. Динамическая подсветка характеризуется более правильной, насыщенной цветопередачей.

В заключении статьи для общего представления предлагаю вам посмотреть короткое тематическое видео о том, как собирают LED телевизоры в России.

Прежде чем потребитель приобретет телевизор, набор деталей пройдет по ленточному конвейеру до 200 станций…

Если вы желаете дополнить статью, выразить свое мнение или оставить конструктивные замечания, то добро пожаловать в комментарий.

От редакции

Мы продолжаем знакомить читателей с основами современной телевизионной техники. Те, кто знакомы с нашими предыдущими публикациями («Цифровое телевидение: что это такое?» и «Мобильное телевидение: что это такое?», «3D-телевидение: что это такое?»), смогут расширить свои знания в этой области.

Серость жизни не скрасит даже цветной телевизор
Народная мудрость

Роль телевидения в жизни современного человека трудно переоценить. Когда-то (по историческим меркам еще совсем недавно) телевизионных каналов было совсем мало, сами телевизоры были примитивны, а качество изображения (тогда еще черно-белого) оставляло желать лучшего, но и тогда популярность телевидения была весьма высокой. Зачастую приходилось делать предельно простой выбор между вариантами: «можно купить» и «нигде не достать».

За последние двадцать лет ситуация изменилась кардинально. В любом магазине бытовой электроники полки и витрины заставлены сотнями моделей телевизоров различных марок, типов, размеров и цен. Выбор аппаратуры огромен, и разобраться в этом порой нелегко даже специалисту.

В данной статье рассмотрены две основные технологии современного телевизоростроения, а также преимущества и недостатки каждой из них. Все это сделано для того, чтобы заинтересованный читатель смог сделать обоснованный выбор.

Плоские телевизоры сменяют кинескопные

Все многообразие представленных моделей определяется двумя наиболее важными параметрами: типом конструкции и размером экрана. Сегодня традиционные кинескопные телевизоры сходят со сцены, и рынок завоевывают два типа плоских телевизоров: жидкокристаллические (ЖК) — LCD (Liquid Crystal Display) и плазменные — PDP (Plasma Display Panel). Именно эти современные технологии сегодня являются главными конкурентами, и именно их противоборство зачастую заставляет покупателей чесать затылки, выбирая замену устаревшему кинескопному «старичку».

В отличие от кинескопных, плоские телевизоры (иногда говорят плоскопараллельные панели) не имеют геометрических искажений изображения и в них не используется высокое напряжение (да-да, те самые киловольты, без которых ни один кинескоп работать не может). Такие телевизоры не создают вредных электрических и магнитных полей, так как они не содержат таких узлов разверток и высоковольтного напряжения, какие используются в традиционных телевизорах. Они и сами не подвержены влиянию внешних полей, что с успехом позволяет использовать их в качестве устройств отображения информации в домашних кинотеатрах совместно с акустическими системами, содержащими динамические головки с неэкранированными магнитами.

Плоские телевизоры имеют очень малую толщину корпуса, позволяющую более экономично использовать жилое пространство и вписывать их практически в любой интерьер. И еще, что очень важно, только плоские современные телевизоры в полной мере поддерживают новейшие цифровые технологии, в том числе обеспечение показа телевидения высокой четкости.

Главное отличие новых технологий формирования изображения на плоских экранах от кинескопных заключается в управлении всем массивом элементов изображения одновременно. Напомним читателю, что процесс воспроизведения изображения на экране кинескопа сводится к последовательному прорисовыванию электронными лучами отдельных строк, цельная картина из которых складывается только благодаря инерционности ее восприятия зрением человека.

И та, и другая технологии используют общий базовый принцип получения многообразия цветов — разбиение экрана на мельчайшие точки (пикселы), каждая из которых формируется тремя еще меньшими точками (субпикселами) или ячейками трех основных цветов: красного, зеленого, синего (триадами). Если зритель находится на каком-то удалении от экрана, то он не может различить субпикселы друг от друга и воспринимает их как единое целое. Поэтому, используя три этих цвета в различных пропорциях, можно создавать многообразие цветов, а в равных пропорциях, но с различной интенсивностью, — все оттенки серого от белого до черного.

Рассмотрим, прежде всего, чем же отличаются друг от друга эти две современные технологии.

На жидких кристаллах

ЖК-телевизоры (их еще называют ЖК-дисплеями) используют тонкий слой жидкокристаллического материала — органического соединения, характеризующегося сочетанием свойств жидкости (например, текучестью) и твердых кристаллов (например, оптической анизотропией, т.е. различием оптических свойств среды в зависимости от направления распространения в ней света и его поляризации).

Рассмотрим, как это все работает. С технической точки зрения технология работы ЖК-дисплея представляет собой способ модуляции (изменения проницаемости) света с помощью набора большого количества ЖК-ячеек (это и есть субпикселы). Для получения изображения субпикселы не светятся сами, а только изменяют прозрачность.

Такую плоскую конструкцию называют ЖК-матрицей. Говоря проще, изображение на экране создается путем пропускания или прерывания света специального источника задней подсветки множеством ячеек. Благодаря их способности становиться полностью прозрачными или наоборот закрытыми, можно управлять проходящим светом, создавая цельное изображение.

Источник подсветки излучает обычный неполяризованный белый свет. Как известно из курса физики, свет представляет собой электромагнитную волну, где векторы электрического и магнитного полей направлены перпендикулярно друг другу и направлению распространения волны, а поляризация влияет на ориентацию вектора электрического поля.

Работа ЖК-дисплея основана на использовании эффекта вращения плоскости поляризации светового потока слоем ЖК-материала (так называемого крутящего или твист-эффекта). Известно, что молекулы ЖК-материала обладают дипольным моментом. Напомним читателю, что диполь — это совокупность двух разноименных электрических зарядов одинакового значения, находящихся на некотором расстоянии друг от друга.

В результате взаимодействия электрических полей диполей образуется спиралевидная структура из молекул ЖК-материала, которая в отсутствии приложенного к ячейке напряжения обеспечивает поворот плоскости поляризации светового потока на 90° (рис.1,а).

Конструкция ЖК-дисплея такова, что плоскости поляризации верхнего и нижнего поляризационных фильтров (их еще называют поляроидами) повернуты друг относительно друга на 90°. Как показано на рис.1,а световой поток сначала проходит через верхний поляризационный фильтр. При этом его половина (на рисунке условно показана белым цветом), не имеющая азимутальной поляризации, теряется. Остальная часть уже поляризованного светового потока (на рисунке условно показана черным цветом), проходя через слои ЖК-материала, поворачивается на 90°. В результате ориентация плоскости поляризации светового потока совпадает с плоскостью поляризации нижнего фильтра и световой поток проходит через него практически без потерь.

Если же к ЖК-ячейке приложить определенное напряжение, как это показано на рис.1,б, то спиралевидная молекулярная структура разрушается и проходящий через ЖК-материал световой поток уже не изменяет плоскость поляризации и практически полностью поглощается нижним поляризационным фильтром. Таким образом, ЖК-матрица имеет два крайних оптических состояния: прозрачное и непрозрачное. Отношение коэффициентов пропускания светового потока в обоих состояниях определяет контрастность изображения.

Поэтому, если на кристалл подать напряжение, то угол поворота плоскости поляризации будет зависеть от его величины подобно стрелке компаса, ориентирующейся по магнитному полю Земли. В зависимости от угла поворота, т.е. от уровня приложенного напряжения, могут быть и промежуточные значения прозрачности, а это значит, что через кристалл будет проходить больше или меньше света, в результате чего каждый субпиксел даст то или иное количество красного, зеленого или синего цвета.

Это свойство жидких кристаллов и стало причиной их успеха в дисплейных технологиях.

Итак, каждый пиксел благодаря триадам обретает строго определенный цвет, который задается с помощью прозрачных цветовых фильтров. Если быть точным, то фильтры просто не пропускают ненужные цвета спектра, поглощая до 75% света. Каждый субпиксел имеет одинаковое строение и отличается только размещенным напротив него цветовым фильтром. Различные сочетания цветов соседних пикселов обеспечивают получение обширного диапазона цветовых оттенков на экране.

Ложка дегтя в бочке меда

ЖК-технология имеет много преимуществ. Прежде всего, благодаря полупроводниковым технологиям производства (литография, напыление и т.п.), удается делать чрезвычайно маленькие пикселы, в связи с чем ЖК-матрицы очень компактны. Поэтому они находят применение во многих портативных приборах: мобильных телефонах, навигаторах, дисплеях и т.п. Основной их объем занимают люминесцентные лампы задней подсветки. Но в связи с внедрением в последних разработках ЖК-телевизоров в качестве источников задней подсветки современных миниатюрных белых светодиодов (так называемые LED (Light Emitting Diode)-телевизоры), они становятся еще более плоскими.

Поскольку качественные ЖК-матрицы «живут» очень долго, то телевизоры с ними имеют большую долговечность. Большинство встречающихся дефектов ЖК-телевизоров связаны с отказами ламп подсветки или источников их питания (инверторов). Неисправные лампы подсветки в большинстве случаев можно заменить.

ЖК-панели имеют большую яркость свечения и пикселы в них не мерцают, поэтому их можно рассматривать с достаточно близкого расстояния, что и является причиной их массового использования в качестве компьютерных мониторов.

ЖК-панели потребляют от питающей сети гораздо меньше энергии, нежели аналогичные по размеру диагонали кинескопные телевизоры.

Но, как известно, без ложки дегтя не обходится ни одна бочка меда. И, главное, что здесь необходимо отметить: получение настоящего глубокого черного цвета на ЖК-матрице долгое время было затруднительно. Ведь и в закрытом состоянии ячейки не могут быть абсолютно непрозрачными, а даже, если это так, то свет «умудряется» просачиваться между ними и в итоге черные области выглядят темно-серыми.

Применение для подсветки нескольких тысяч светодиодов, о которых говорилось выше, стало одновременно и эффективным методом повышения контрастности изображения. Целенаправленное выключение светодиодов, расположенных за темными областями изображения, делает черный цвет более глубоким. В ряде моделей благодаря используемой управляемой светодиодной подсветке величина контрастности достигает 1000000:1. Однако какими бы малыми светодиоды ни были, и как бы много их ни было, их все равно в тысячи раз меньше, чем ячеек. Поэтому с высокой точностью подсветить лишь светлые области изображения не всегда возможно. Вследствие этого неизбежно появление артефактов изображения — светлых окаймлений вокруг светлых объектов на темном фоне.

Еще одной проблемой использования ЖК-матриц долгое время было уменьшение яркости, контрастности и насыщенности изображения в зависимости от углов обзора (углов поля зрения). Ведь не надо забывать, что излучаемый подсветкой свет проходит через два поляризационных фильтра, и лишь затем покидает поверхность экрана. Ранее, когда ЖК-матрицы использовались только в мониторах, непосредственно перед которыми находился пользователь, эта проблема не была так важна. Другое дело в телевизорах с большими экранами, перед которыми в качестве зрителей может собираться вся семья. Надо отметить, что в последнее время в связи с внедрением новейших технологий построения ЖК-матриц с этим недостатком удалось успешно справиться. Сейчас нормой стали углы обзора во всех направлениях не менее 170°.

И еще одна важная, но решаемая проблема связана с инерционностью изменения свечения, вызванной тем, что реакция ЖК-материала на изменение приложенного напряжения отнюдь не мгновенна. Это может выражаться в появлении так называемых «шлейфов» за быстро перемещающимися на экране объектами. Используется даже (особенно часто в компьютерных мониторах) связанный с этим явлением специальный параметр, называемый временем отклика.

Одним из вариантов решения этой проблемы могло бы быть отключение подсветки во время смены кадров, но при этом появляется не полезное для зрения мерцание. В современных моделях ЖК-телевизоров и мониторов эта проблема решена схемными и конструктивными методами, время отклика не превышает 5 мс и никакие «шлейфы» даже при просмотре очень «быстрых» фильмов уже не видны.

Текст: Александр Пескин,
доцент МГТУ
им. Н.Э.Баумана

Плоскопанельные телевизоры

Конструкция и принцип работы ЖК-телевизора

Схема работы LCD-телевизора:

Внутри корпуса у задней стенки расположена одна или несколько ярких ламп подсветки, интенсивность свечения которых можно изме­нять. Перед лампой находится матрица. Матрица - плоский массив однотипных элементов. В данном случае элементом является жидкий кристалл со светофильтром красного, синего или зеленого цвета. Сна­ружи матрицу защищает стеклянный экран, иногда дополненный спе­циальной пленкой.

Лампа подсветки создает постоянный свет. Между лампой и экраном находится матрица. К каждому жидкому кристаллу матрицы отдельно подведено электричество. При изменении электрического напряже­ния меняется структура жидкого кристалла, и он пропускает больше или меньше света. Чем больше света пропускает кристалл, тем ярче светится точка на экране.

Перед каждым кристаллом стоит светофильтр, который пропускает свет только с одной длиной волны (синий, красный или зеленый). Крис­талл и светофильтр формируют субпиксель. Субпиксели красного, си­него и зеленого цвета объединяются в группы (триады) и формируют пиксель изображения.

Теперь немного усложним описание:

Световые волны потому и называются волнами, что представляют собой электромагнитные колебания. В отличие от волн на поверхно­сти воды, электромагнитные волны (и свет в том числе) могут коле­баться в разных плоскостях (не только вверх-вниз, ной в любой другой плоскости).

Поляризационный фильтр пропускает через себя волны с опреде­ленным направлением колебаний, а остальные поглощает. В этом и заключается таинственный процесс поляризации, который так часто встречается при описании ЖК-телевизоров.

Устройство TFT-панели:

1 - Стеклянные пластины.

2,3 - Горизонтальный и верти­кальный поляризаторы.

4 - RGB-светофильтр.

5,6 - Горизонтальные и верти­кальные управляющие шины.

7 - Слои прочного полимера,

8 - Разделители.

9 - Тонкоплёночные транзисторы.

10 - Фронтальный электрод.

11 - Задние электроды.
Стрелка - свет от внешнего ис­точника.

В ЖК-телевизорах используются две пластины из поляризующего ма­териала, между которыми находится раствор жидких кристаллов - моле­кул стержневидной формы. В отсутствие внешнего воздействия кристал­лы пропускают свет через поляризаторы, в результате чего видна под­ложка. Электрическое поле, приложенное к жидкости, ориентирует крис­таллы в одном направлении. В результате кристаллы по­ворачивают плос-кость по­ляризации света, и он не может пройти через эту сборку. В результате этого ячейка кристаллов, к кото­рой приложено напряже­ние, выглядит тёмной. Таким образом, система «поляризационные фильтры + жидкий кристалл» пропускает или не пропускает идущий через них от лампы-подсветки свет.

Технологии изготовления ЖК-экранов

TN+film (Twisted Nematic + film)

Частица «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно от 90° до 150°). К сожалению, способа улучшения контрастности и време­ни отклика для панелей TN пока не нашли, причём время отклика у дан­ного типа матриц является на существующий момент одно из лучших, а вот уровень контрастности нет. TN+film - самая простая технология.

Матрица TN+film работает следующим образом: если к субпикселям не прилагается напряжение, жидкие кристаллы поворачиваются относитель­но друг друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. Так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если желтые, зеленые и голу­бые субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц.

IPS (In-Plane Switching)

Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN+film. Хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а так­же высокой контрастности и цветопередачи, время отклика осталось на низком уровне

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут пер­пендикулярно первому, и свет через него не проходит. Отображение черного цвета является идеальным. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов повора­чиваются перпендикулярно своему начальному положению и пропус­кают свет.

Особенности LCD-технологии

Яркость и контрастность

Яркость субпикселя в современных моделях плавно меняется за счет поляризации светового потока в диапазоне от 0 до 90 градусов. Благо­даря этой особенности LCD-телевизоры лишены недостатка плазмен­ных панелей (хуже отображают темные оттенки) и хорошо отображают темные оттенки, которые легко отличимы друг от друга.

Изменение яркости

Жидкие кристаллы не обладают мгновенной реакцией на управляю­щий импульс, поэтому смена яркости субпикселей происходит не мгно­венно. Проходит определенное время, пока молекула жидкого крис­талла изменится. Отсюда ограниченная скорость реакции субпикселя и, как следствие, проблемы с отображением быстро меняющихся дина­мических сюжетов. Эти две характеристики связаны между собой, поэтому будем рас­сматривать их вместе. Чем ярче экран, тем легче будет на него смотреть при ярком солнеч­ном свете. Производители пишут в характеристиках большие значения яркости и выдают это за плюс. Вот тут мы подходим к определению контраст­ности.

Контрастность - это коэффициент, выражающий отношение между максимальным и минимальным значениями яркости. Чем выше контрастность, тем более чёткой будет картинка, тем бо­лее резкими будут казаться границы предметов на экране. Но оказалось, что повы­сить контрастность очень легко. Для этого достаточно увеличить яр­кость, с чем у технологии LCD нет никаких проблем. Вот и получается: на коробке написан высокий коэффициент контрастности, но это зна­чение достигается при максимальной яркости экрана, а при такой яр­кости на телевизор смотреть просто невозможно. На сегодняшний день всё не так плохо. На выручку производителям опять приходят такие технологии как IPS. Как мы помним, в этих технологиях жидкие кристаллы в расслабленном состоянии не пропускают свет. При этом получается настоящий чёрный цвет и при­личные показатели контрастности

Угол обзора

LCD-технологии изначально присущи проблемы с углами обзора. Как мы помним, LCD-дисплей похож на бутерброд, который состоит из нескольких слоев. Стоит зрителю отклониться от плоскости экрана, свет сразу изменяет угол поляризации и изменяется яркость пикселя. Разработчики прилагают максимум усилий, чтобы решить эту проб­лему. Углом обзора считается такой сектор, в пределах которого контрастность меняется не более, чем в 10 раз. Зна­чит, если производитель пишет в характеристиках, что угол обзора ра­вен 160 градусов, то при отклонении в одну либо другую сторону на 80 градусов контрастность будет составлять не менее 10% от исходной. Таким образом, стоит сдвинуться немного в сторону, как заметно из­менится цветопередача и упадёт контрастность, а о просмотре теле­визора на граница углов обзора лучше сразу забыть. Если уж контраст­ность упала в 10 раз, что говорить про цвета?

«Битый пиксель»

Если управляющий транзистор выйдет из строя (кристалл не ломает­ся, если что-то и выходит из строя, то только транзистор), то пиксель перестанет функционировать. В зависимости от технологии битый пиксель может выглядеть как светящаяся или как черная точка. Если по технологии кристалл в отключенном состоянии не пропускает свет, то битый пиксель будет незаметным (черным), если кристалл в отклю­ченном состоянии пропускает максимум света, то, естественно, битый пиксель будет гореть.

«Черный цвет»

Молекулы жидкого кристалла никогда не могут поляризовать весь свет на 90 градусов. Даже если приложить к ним максимальное напря­жение, они будут пропускать какую-то часть света. Поэтому чёрный цвет никогда не получается идеальным. Вместо чёрного на экране ЖК-телевизора отображаются оттенки темно-серого.

Угол обзора

У плазменных панелей угол обзора составляет не менее 160 градусов как по горизонтали, так и по вертикали. Это вполне чест­ные показатели, и при отклонении на 80 градусов от центра экрана из­менения контрастности незаметны, цвета на картинке остаются без изменений. Это означает, что можно смотреть фильмы из любой точки комнаты (в том числе и развалившись на кушетке в противоположном от панели углу). Кроме того, плазменная панель вполне комфортно раз­местится под потолком бара и будет незаменима, например, для кол­лективного просмотра футбольных матчей (угла обзора по вертикали и по горизонтали для этого хватит).

Яркость и контрастность

Яркость измеряется в канделах на квадратный метр. Для ЭЛТ-телевизоров отличным показателем считается яркость порядка 400 кд/м2. Плазменные панели очень редко опускаются ниже этой отметки. Это означает, что просмотр одинаково комфортен при любом свете и не зависит от того, под каким углом на экран падает свет. Но гнаться за высокими показателями по этому параметру не стоит, ведь просмотр ТВ при максимальной яркости вряд ли можно считать комфортным

В PDP-технологии выклю­ченный пиксель совсем не излучает свет, поэтому получается глубокий чёрный цвет. Если добавить к этому высокую яркость, то получим от­личные показатели контрастности.

LED ТЕЛЕВИЗОРЫ

Всё познаётся в сравнении. До недавнего времени мы пользовались жидкокристаллическими телевизорами и мониторами, в большинстве своём оснащёнными традиционной подсветкой на основе так называемых флуоресцентных (люминесцентных) ламп с холодным катодом (Cold Cathode Fluorescent Lamps, CCFL), проще говоря, ламп дневного света. И всё бы хорошо, но подсветка с помощью флуоресцентных ламп имеет ряд недостатков, которые можно считать фундаментальными. Например, при CCFL подсветке достаточно сложно реализовать действительно глубокие чёрные тона – постоянно включенные лампы всё равно создают определённую "утечку" света даже на тех фрагментах изображения, которые по задумке в данный момент должны быть тёмными. Отсюда также логически вытекает субъективно воспринимаемое снижение чёткости картинки.

Помимо этого, подсветка с помощью флуоресцентных ламп затрудняет передачу множества цветовых оттенков, в результате чего добиться хорошей цветовой насыщенности оказывается очень сложно.

Среди других проблем технологии CCFL LCD также нельзя не отметить сложность с достижением высоких частот развёртки, ограниченный срок службы ламп, сравнительно высокое энергопотребление, и, наконец, экологический нюанс - необходимость использования ртути в составе ламп.

LED-подсветка бывает разная

К настоящему времени разработан ряд различных технологий подсветки ЖК экранов с помощью светодиодов. Как правило, для создания модулей подсветки (Back Light Unit, BLU), используют LED-массивы, составленные из белых (White) или разноцветных - RGB (Red, Green, Blue; красных, зелёных, голубых) светодиодов.

Принцип подсветки также представлен двумя основными вариантами прямой (Direct) и торцевой (Edge). В первом случае это массив светодиодов, расположенный позади ЖК-панели. Другой способ, позволяющий создавать сверхтонкие дисплеи, получил название Edge-LED и предусматривает размещение светодиодов подсветки по периметру внутренней рамки панели, а равномерное распределение подсветки осуществляется с помощью специальной рассеивающей панели, расположенной за ЖК экраном – как это делается в мобильных устройствах.

Сторонники прямой светодиодной подсветки обещают более качественный результат за счёт большего количества светодиодов и технологии локального затемнения для снижения цветовых разводов. Обратная сторона прямой подсветки – большее количество светодиодов и сопутствующее повышение расхода энергии и цены. К тому же о сверхтонком дизайне телевизора придётся забыть.

По своей сути ЖК экран - это многослойный "пирог", составленный из фильтров цвета, массивов жидких кристаллов, ламп подсветки и пр. Ячейки жидких кристаллов сами по себе не светятся, но, в зависимости от уровня поданного на них напряжения, открываются для пропускания света полностью, приоткрываются частично или просто закрыты в случае отображения тёмного участка картинки.


Роль ламп подсветки во всей это истории – просветить приоткрывшиеся ЖК ячейки, чтобы на экране получилась финальная картинка. В случае использования традиционных флуоресцентных ламп слой подсветки оказывается настолько толстым, что занимает больший объём, нежели все остальные слои вместе взятые.


Немаловажный фактор – расход электричества. Традиционные ЖК телевизоры, конечно же, экономнее былых моделей с электронно-лучевыми кинескопами, но не стоит забывать, что и диагонали нынче уже не те, так что с большими ЖК телевизорами электросчетчики и сейчас крутятся достаточно быстро. Что касается новых LED-моделей, светодиодная подсветка позволяет значительно сократить расход энергии без ущерба для яркости изображения

Плоскопанельные телевизоры

ПРИНЦИП ПОСТРОЕНИЯ ТЕЛЕВИЗИОННОГО ИЗОБРАЖЕНИЯ

Изображение на экране любого телевизора формируется из точек, именуемых пикселями. Пиксель всегда состоит из трёх субпикселей. Каждый субпиксель от­вечает за свой цвет - красный, зелёный или синий. С помощью смеши­вания трех этих цветов в разных пропорциях можно получить практи­чески любой цвет. Расстояния между центрами субпикселей очень малы, поэтому для человеческого глаза три горящих субпикселя в большинстве случаев выглядят как одна точка.

При помощи пикселей и субпиксе­лей формируется изображение на всех существующих типах экранов: жидкокристаллических, ЭЛТ и плаз­менных.

ЖИДКОКРИСТАЛЛИЧЕСКИЕ ТЕЛЕВИЗОРЫ (LCD)

Мечта о "плоских" телевизорах и мониторах, имеющих очень небольшой размер в глубину, возникла, не одно десятилетие назад. Но только в последние годы она воплотилась в реальность: появились серийные модели на плоских отображающих панелях.

Электронно-лучевые трубки (кинескопы), служащие основой любого телевизора, существуют уже многие десятилетия и постоянно совершенствуются. Однако они имеют и недостатки: наличие высокого напряжения, большие объемные габариты (особенно а глубину при больших размерах изображения) и др. Поэтому разработчики всегда стремились к новым идеям при создании отображающих устройств. Одна из них - использование жидкокристаллического вещества в качестве клапана для пропускания световых потоков. Окончательно эта идея воплотилась в виде ЖК дисплеев (панелей) - LCD (Liquid Crystal Display). Быстрый рост их производства за рубежом привел к появлению как большого числа моделей "плоских" телевизоров, так и компьютерных мониторов.

Рассмотрим принцип работы и варианты конструкции таких дисплеев . В общем известно, что ЖК вещество (материал) модулирует внешний световой поток под действием электрического поля или тока. Конкретная работа ЖК дисплеев основана на использовании эффекта вращения плоскости поляризации светового потока слоем нематического ЖК вещества (так называемого твист-эффекта).

Конструкция ЖК панели показана на рис. 1.

Панель содержит две плоскопараллельные подложки из прозрачного материала (обычно стекла толщиной около 1 мм), расположенные одна относительно другой с фиксированным зазором, в который введен ЖК материал. На внутренних сторонах подложек нанесены электроды адресации в виде определенного рисунка. В качестве прозрачного проводящего слоя электродов используют пленку оксида индия.

Слои ориентирующих покрытий, нанесенные на электроды адресации, предназначены для задания определенной ориентации ЖК молекул в рабочем материале. Зазор между подложками задают калиброванные шарообразные или цилиндрические распорные элементы (спейсеры), диаметр которых может быть в пределах 3...25 мкм. После сборки (склеивания) панель герметизируют по всему периметру, причем слой герметика также имеет спейсеры. На внешние стороны подложек наклеены поляроиды с определенной ориентацией плоскости поляризации.

Принцип работы ЖК ячейки (пиксела) панели с использованием твист-эффекта иллюстрирует рис. 2.

Молекулы ЖК материала обладают дипольным моментом. В результате взаимодействия электрических полей диполей образуется спиралеаидная структура из молекул ЖК вещества. Слои ориентирующих покрытий на верхней и нижней подложках совместно с дипольной структурой ЖК материала в отсутствие электрического поля обеспечивают поворот плоскости поляризации светового потока на 90°. Ориентированный так слой нематического ЖК вещества обладает свойством поляризации проходящего через него светового потока. Плоскости поляризации верхнего и нижнего поляризационных фильтров повернуты один относительно другого на 90°.

Как видно на рис. 2,а, световой поток сначала проходит через верхний поляризационный фильтр. При этом его половина, не имеющая азимутальной поляризации, теряется. Остальная часть уже поляризованного света, проходя через слои ЖК материала, поворачивает плоскость поляризации на 90°. В результате ориентация плоскости поляризации светового потока будет совпадать с плоскостью поляризации нижнего фильтра и поток будет проходить через него практически без потерь.

Если ЖК вещество поместить в электрическое поле, подав на электроды адресации напряжение так, как показано на рис. 2,6, спиралевидная молекулярная структура в нем разрушается. Проходящий через ЖК материал световой поток уже не изменяет плоскость поляризации и почти полностью поглощается нижним поляризационным фильтром. Следовательно, ЖК вещество имеет два оптических состояния: прозрачное и непрозрачное. Отношение коэффициентов пропускания в обоих состояниях определяет контрастность изображения.

Для обеспечения управления оптическим состоянием ячеек-пикселов (элементов изображения) панели требуется сформировать такие напряжения на электродах адресации, чтобы состояние каждого пиксела изменялось без изменения состояния других. Исходя из этого топология электродов адресации ЖК панели представляет собой матрицу, образованную системой строчных и столбцовых электродов, расположенных конструктивно на двух параллельных прозрачных подложках. Элементы (пикселы) телевизионного изображения в ЖК панели образуются на пересечении строчных и столбцовых электродов. Для реализации управления большим числом элементов изображения (а в телевизорах это практически всегда так) применяют мультиплексирование сигналов.

Несколько вариантов топологии матриц, используемых в ЖК панелях, представлено на рис. 3.

Вариант на рис. 3,а - самый простой и наиболее популярный. Вариант на рис. 3,6 позволяет получить более широкий шаг выводов для подачи столбцовых управляющих сигналов. Варианты на рис. 3,в иг - разновидности архитектуры Dual Scan (или Dauble Scan), при которой обеспечивается уменьшение числа мультиплексируемых строк, что позволяет еще больше увеличить контрастность изображения. Фактически в этих случаях формируются два отдельных экранных поля, зазор между которыми незаметен. Адресация сигналов для обоих полей происходит одновременно.

Различают два способа адресации в ЖК панелях: пассивный и активный. При пассивной адресации используют временное мультиплексирование строк без применения каких-нибудь ключевых элементов. Недостатками такого способа можно назвать низкий коэффициент мультиплексирования при малой контрастности, сильное проявление кросс-эффекта и сложная система формирования управляющих сигналов.

При активной адресации для каждого пиксела на пересечении строки и столбца создают ключевой элемент по схеме, изображенной на рис. 4.

Такие элементы позволяют использовать более низкий коэффициент мультиплексирования. Контрастность изображения при этом получается значительно выше. Однако ЖК панели с активной адресацией гораздо дороже панелей с пассивной адресацией, что удорожает и построенные на них аппараты. Активными ключевыми элементами чаще всего служат тонкопленочные полевые транзисторы TFT (Thin Film Transistor). На рис. 5,а показан вариант топологии, а на рис. 5,б - принципиальная схема ключевого элемента активной адресации на таком транзисторе.

Цветные фильтры размещают на внутренней стороне ближней к зрителю подложки ЖК панели. Материалами для изготовления фильтров служат тонкие пленки различных красителей. Их наносят по различным технологиям: осаждением из растворов или из газовых сред, печатным способом и др. Варианты топологии цветных фильтров иллюстрирует рис. 6 (R - для красного цвета, G - зеленого, В - синего).

Число строк ЖК панелей определяет коэффициент мультиплексирования. Чаще всего применяют низкомультиплексированные панели со значениями коэффициента 1:2, 1:3 и 1:4. В зависимости от этого в конкретных устройствах управления создается несколько уровней постоянного напряжения, из которых формируются напряжения управления строками и столбцами необходимой формы.

На рис. 7 изображены диаграммы напряжений адресации в ЖК панелях с коэффициентом мультиплексирования 1:3. На нем ВР0-ВР2 обозначают сигналы строчных выходов; Sn-Sn+2 - сигналы столбцовых выходов; UDD - напряжение питания контроллера управления панелью; Ulcd - напряжение смещения, питающее выходные формирователи сигналов; Uoбp, равное Udd - Ulcd. - образцовое напряжение; Тк - период кадровой развертки.

Для создания светового потока в ЖК панелях применяют устройство задней подсветки, которое содержит источник излучения, светораспределители (световоды) и один или два отражателя. Источником излучения служат лампы накаливания, светодиоды, электролюминесцентные панели, чаще всего, люминесцентные лампы.

На рис. 8 представлены типовые конструкции устройств задней подсветки с фронтальным (рис. 8,а) и торцевым (рис. 8,6) расположением люминесцентной лампы.

Использование ЖК панелей рассмотрим на примере одной из популярных моделей LC-20C2E фирмы SHARP. Фирма начала изготовление "плоских" телевизоров одной из первых - еще в 1996, 1997гг., возглавив до этого список разработчиков и изготовителей ЖК панелей. Сейчас список моделей на этих панелях у фирмы SHARP превышает десяток, а размер экрана по диагонали уже перешагнул 40 дюймов (около 92 см).

TFT ЖК панель (LCD) описываемой модели имеет размер экрана по диагонали 20 дюймов и характеризуется значительным углом обозрения (160° как по горизонтали, так и по вертикали). Модель обладает существенно более низким по сравнению с обычными телевизорами энергопотреблением (не более 45 Вт).

Телевизор рассчитан на прием сигналов в радиочастотных стандартах В/G/L/D/K/l/M/N и по системам цветности PAL/SECAM/NTSC. Селектор каналов (тюнер) телевизора позволяет настроить и запомнить 197 телевизионных каналов, в том числе и в интервалах кабельного телевидения (CATV). Усилитель 3Ч телевизора обеспечивает мощность по 2,5 Вт в двух каналах воспроизведения звука.

Усовершенствованная матричная ЖК панель имеет разрешение 921x600 пикселей. Яркость свечения экрана - не хуже 430 кд/м2. Срок службы используемых для подсветки LCD люминесцентных ламп - 60000 ч.

Телевизор питается от источника постоянного напряжения 13 В Пр и пользовании специального сетевого адаптера, входящего в комплект поставки, телевизор может питаться и от сети переменного напряжения 110...240 В частотой 50/60 Гц. Габариты телевизора (ширина, высота, глубина) - 476,6x556,4x229,4 мм. Масса аппарата - 8 кг.

Для обеспечения комфортности просмотра плоскость экрана телевизора можно наклонить относительно перпендикулярной к подставке плоскости на 5° вперед или на 10° назад, а также повернуть на 40° вправо или влево относительно среднего положения. Внешний вид телевизора показан на рис. 9.

Схема соединений плат и устройств телевизора представлена на рис. 10.

В каждом соединительном разъеме указаны число контактов и условно способ их соединения с контактами разъема другого блока: "1 в 1" или "вперекрест". В основном контакты соединены первым способом контакт 1 - с контактом 1,2 - с контактом 2 и т. д. Лишь разъемы МТ и МА между платой тюнера и основной платой соединены "вперекрест". Например, контакты разъемов МТ распаяны так: контакт 1 - к контакту 20, контакт 2 -к контакту 19 и т. д. То же относится и к разъемам МА, только в них - 30 контактов. Это необходимо помнить при изучении принципиальных схем блоков и ремонте Телевизор, кроме ЖК панели, на рисунке не показанной, и двух динамических головок, содержит семь плат: тюнера (Tuner PWB), основной (Main PWB) и видео (Video PWB), звуковой выходной (S-Out PWB), переключателей (Switch PWB) и двух инверторов (Inverter A PWB и Inverter В PWB), а также устройство задней подсветки (Back Light) ЖК панели. Через разъемы LS и LG на ЖК панель с основной платы поступают исходные управляющие (Source) и стробирующие (или сканирующие) сигналы (Gate).

На плате тюнера находится непосредственно сам тюнер, а также расположены микроконтроллер управления с телетекстом и устройством OSD (On Screen Display - отображение на экране служебной или дополнительной информации), микросхемы ПЗУ, программируемого ЗУ и сброса микроконтроллера, переключатели аналоговых сигналов R, G, В (как внешних, так и сформированных микроконтроллером), стабилизаторы напряжений 5; 9 и 10,1 В, а также разъемы для подачи внешних видеосигналов и сигналов звука, в том числе разъем SCART.

На основной плате размещено большинство устройств телевизора, в том числе процессор обработки мультимедийных сигналов звука (в нем же находится канал обработки сигналов ПЧ звука), буферный усилитель, предварительный усилитель сигналов 3Ч, синхроселектор, переключатель выбора режимов TV/AV. Кроме того, она содержит микроконтроллер управления (отличающийся от установленного на плате тюнера), микросхемы ЭПЗУ и сброса микроконтроллера, видеопроцессор с АЦП, контроллер ЖК панели с устройством внешней памяти (FIFO), аналоговый мультиплексор, детектор ошибок ламп подсветки, устройства градуировки образцовых напряжений и общего управления панелью, ЦАП и импульсный источник питания, формирующий все необходимые для работы узлов телевизора напряжения: 3,3; 5; 8; - 8; 14; 28 и 31 В.

Небольшая видеоплата включает в себя элементы согласования входного гнезда J5001 (через него подают внешний полный видеосигнал AV3) и специального гнезда SC5001 (предназначено для подачи внешнего сигнала S-VHS, т. е. отдельно компонентов яркости Y и цветности С) с последующими цепями телевизора.

Звуковая выходная плата содержит усилитель мощности сигналов ЗЧ, стабилизатор напряжения питания усилителя, каскады блокировки звука, а также детекторы ошибок люминесцентных ламп подсветки.

На плате переключателей расположены кнопки клавиатуры управления, приемник ИК излучения системы ДУ гнездо подключения головных телефонов и ключ переключения напряжения дежурного режима.

Платы инверторов А и В необходимы для преобразования постоянного напряжения 13 В, подаваемого извне через разъем J3702 платы тюнера, в переменные напряжения 200...300 В частотой 400 Гц, которые через разъемы Р6751 и Р6551 поступают на люминесцентные лампы устройства задней подсветки ЖК панели.

Конкретная конструкция ЖК панели (TFT LCD) рассматриваемой модели телевизора изображена на рис. 11.

Она выполнена в виде так называемого "бутерброда". На экранирующей плате помещены одна за другой две отражающие пластины, входящие в состав устройства задней подсветки Устройство включает в себя также шесть люминесцентных ламп (на рисунке показаны только две из них). В качестве светораспределителя служа световоды имеющие дифракционную структуру призматического сечения О назначении спейсеров уже было сказано в первой статье цикла Далее расположены диффузионная и призматическая пластины

Цель применения всех перечисленных приспособлений - максимально использовать световой поток и обеспечить равномерное его распределение в рабочей зоне подсветки.

Пластина цветного фильтра о которой также раньше было рассказано находится непосредственно за панелью Сама ЖК панель имеет контакт ные разъемы для подачи исходных управляющих сигналов (LSD Source) и стробирующих (сканирующих) сигналов (LSD Gate). На рисунке показаны фрагменты ленточных кабелей, по которым направляются эти сигналы.

Весь рассмотренный "бутерброд" стянут восемью винтами два из них изображены на рисунке).

Структурная схема платы тюнера показана на рис. 12.

(нажмите для увеличения)

Схема остальных узлов телевизора "Sharp - LC-20C2E представлена на рис. 13.

(нажмите для увеличения)

Принципиальная схема платы тюнера представлена на рис. 14.

(нажмите для увеличения)

Радиочастотный сигнал RF поступает непосредственно на антенный вход самого тюнера (см. рис. 12), находящегося на плате тюнера. На его выходах формируются следующие сигналы: SSIF - сигнал ПЧ звука, который через контакт SIF разъема SC902/SC901 проходит на основную плату (см. рис. 13), а именно - на процессор обработки мультимедийных сигналов звука IC901 (1X3371 СЕ); CCVS (см. рис. 12) - полный цветовой телевизионный видеосигнал, который через контакт TV V того же разъема приходит на микросхему коммутатора видеосигналов (см. рис. 13) основной платы IC402 (NJM2235M); AUDIO MONO (см. рис. 12) - монофонический сигнал 3Ч, который через контакт MONOS того же разъема подан также на микросхему IC901 основной платы (см. рис. 13).

Кроме того, сигнал CCVS (см. рис. 12) через змиттерные повторители (на транзисторах Q33, Q13, Q14) поступает на контакт VIDEO OUTPUT разъема для подключения внешних устройств SC903 (SCART).

На плате тюнера находятся также два гнезда J902, J903, необходимых для подключения левого (L) и правого (R) внешних громкоговорителей. На эти гнезда через усилительные каскады (на транзисторах Q8, Q9, Q11, Q12) проходят сигналы SOUND L/R с соответствующих контактов (SC2 OUT L/R) разъема SC902/SC901, на который они поступают с микросхемы IC901 основной платы (см. рис. 13).

Через соответствующие контакты (см. рис. 12) разъема SC903 (SCART) на телевизор подают сигналы 34 AV SOUND L/R и изображения AV PICTURE. Эти сигналы через контакты SC2 IN L/R и V2 IN разъема SC902/SC901 приходят на основную плату (см. рис. 13), причем звуковые сигналы - на процессор IC901, а видеосигналы - на видеопроцессор IC801 (VPC3230D).

С основной платы на плату тюнера через контакты разъема SC901/SC902 поступают звуковые сигналы SC1 OUT L/R и видеосигналы V2 OUT. Причем первые - со звукового процессора IC901 через буферный усилитель IC902 (NJM4560M), а вторые - с видеопроцессора IC801 (выход VO). И те, и другие сигналы в конечном итоге попадают на выходные контакты соединителя SCART (AV SOUND OUT IVR и AV PICTURE OUT) для записи на видеомагнитофон (см. рис. 12).

Сформированные процессором обработки сигналов звука IC901 (см. рис. 13) сигналы 3Ч проступают на предварительный усилитель на микросхеме IC304 (BH3543F+), а с него через контакты разъема Р2003/Р4004 - на находящееся на плате переключателей гнездо подключения головных телефонов J4001. Принципиальная схема платы переключателей представлена на рис. 15.

(нажмите для увеличения)

Процессор обработки сигналов звука IC901 формирует также звуковые сигналы левого и правого каналов DACM L/R (см. рис. 13 в предыдущей части), которые сначала проходят ФНЧ на микросхеме IC903 (NJM4560M), а затем переключатель каналов IC303 (NJM2283F). Переключатель управляется командой L/R, подаваемой с микроконтроллера управления основной платы IC2001 (IX3565CE).

Сигналы 3Ч левого и правого каналов через контакты разъема Р3301/Р3302 попадают на звуковую выходную плату, принципиальная схема которой показана на рис. 16. Они приходят на входы усилителя мощности 3Ч на микросхеме IC3305 (L44635A+). Усиленные сигналы через контакты разъемов Р304 и Р305 поступают на динамические головки левого L и правого R каналов. Микросхема питается от источника PA VCC (см. рис. 13) напряжением 13 В. Как уже указано, оно сначала проходит с платы тюнера на основную плату, а затем на звуковую выходную плату через контакты разъема Р3301/Р3302.

(нажмите для увеличения)

Как уже было перечислено в предыдущих частях цикла, на плате тюнера (см. рис. 12) расположен микроконтроллер управления 19 (ST92R195), совмещенный с устройствами OSD, телетекста и выделения из сигнала необходимой информации. С микроконтроллером непосредственно связаны микросхемы ЭППЗУ (EEPROM) 13 (TMS27C2001 - 10), статического ОЗУ (SRAM) I6 (W24257 - AS - 35), ЗУ 12 (24C32) и сброса (RESET) И (TS831 - 4IDT).

На выходах микроконтроллера формируются сигналы основных цветов R, G, В (VPC - TEXT на принципиальной схеме), соответствующие выбранному режиму его работы: либо сигналы телетекста, либо сигналы OSD (номера программ, настройки на программы, регулировки параметров и т. п.). Эти сигналы поступают на входы выполненного на микросхеме 14 (ТЕА5114А) переключателя аналоговых сигналов R, G, В. На его другие входы приходят сигналы основных цветов R, G, В с другого подобного переключателя на микросхеме ИЗ. На нее поданы сигналы R, G, В через контакты внешнего соединителя SC903 (SCART). Переключателями управляет микроконтроллер по цепям FB.OSD (переключатель I4) и RGB CONT (переключатель I13). В результате на выходах переключателя I4 появляются сигналы основных цветов, которые через контакты разъема SC802/SC801 (см. рис. 13) проходят на микросхему видеопроцессора и АЦП IC801 основной платы.

Принципиальная схема основной платы состоит из шести частей. Три из них представлены на рис. 17.1 - 17.3.

(нажмите для увеличения)

(нажмите для увеличения)

(нажмите для увеличения)

Микроконтроллер управления платы тюнера I9 (см. рис. 12 в предыдущих частях) формирует также строчные Н и кадровые V синхронизирующие импульсы, поступающие через контакты разъема SC802/SC801 сначала (см. рис. 13 в предыдущих частях) на видеопроцессор IC801 и контроллер управления ЖК панелью IС 1201 (IX3378CE), а с последнего - на микроконтроллер управления основной платы IC2001. Между микроконтроллерами платы тюнера и основной платы происходит обмен информацией посредством показанных на рис. 12 и 13 синхронизирующих и управляющих сигналов SUB CLK, SUB IN, SUB OUT, M/S IN, M/S OUT, H (HSY) и V (VSY).

На плате тюнера (см. рис. 12) находятся также входное гнездо J3702 для подключения источника постоянного напряжения 13 В и окружающие его предохранители. Это напряжение через контакты разъема Р904/Р901 подано на основную плату, а через контакты разъемов Р702/Р6555 и Р703/Р6755 - на платы инверторов В и А соответственно.

На видеопроцессор IC801 (см. рис. 13) поступают следующие аналоговые видеосигналы: AV1 - с коммутатора видеосигналов TV/AV (с микросхемы IC402 по команде с микроконтроллера управления IC2001); AV2 - с разъема SCART платы тюнера; AV3 - через контакт разъема Р903/Р5001, на который приходит внешний видеосигнал V3 IN с одного из гнезд разъема J5001 видеоплаты, и сигнал цветности V1 SC - через контакт того же разъема Р903/Р5001, на который с гнезда разъема SC5001 видеоплаты проходит сигнал цветности SC (S-VHS). Принципиальная схема видеоплаты изображена на рис. 18.

Через контакты разъема Р903/Р5001 (см. рис. 13) поданы также звуковые сигналы V3 IN L и V3 IN R (с двух других гнезд разъема J5001 видеоплаты), которые поступают на процессор обработки сигналов звука IC901. Сигнал яркости V1 SY (S-VHS) с гнезда разъема SC5001 видеоплаты попадает на коммутатор видеосигналов TV/AV (микросхема IC402).

Микросхема IC801 преобразует приходящие на нее аналоговые видеосигналы в цифровые: восьмибитовые сигналы яркости VPYO-VPY7 и цветности UVO-UV7, а также строчные HSY, кадровые VSY и другие (LLC1, LLC2, FIELD) сигналы синхронизации и управления. С выхода микросхемы IC801 аналоговый полный видеосигнал VO, помимо разъема SC901/SC902, приходит на синхроселектор на микросхеме IC401 (BA7046F). Выделенные ей синхроимпульсы CSYNC проходят на микроконтроллер управления IC2001, а импульсы HD - на аналоговый переключатель, выполненный на микросхеме IC2007 (TC4W53U). На последний поданы и синхронизирующие импульсы HSYc видеопроцессора IC801. В зависимости от состояния этого переключателя, управляемого сигналом HSYNC SW, поступающим с микроконтроллера управления 19 платы тюнеpa, на его выходе формируется сигнал OSD HD высокого или низкого уровня. Он попадает на тот же микроконтроллер 19 платы тюнера и управляет в нем работой устройств OSD и телетекста.

На микроконтроллер управления основной платы IC2001 с платы переключателей через контакты разъема Р4004/Р2003 проходят управляющие сигналы с клавиатуры передней панели SW4002-SW4004, SW4006-SW4008 и приемника ИК излучения RMC4002 (см. рис. 15 в предыдущих частях).

С микроконтроллером управления IC2001 (см. рис. 13) связаны микросхемы ЭППЗУ (EEPROM) IC2004 (BR24C08F) и сброса (RESET) IC2002 (PST529DM).

Сформированные видеопроцессором IC801 цифровые сигналы яркости, цветности и синхронизации поступают на большую (160 выводов) микросхему-контроллер IC1201 (IX3378CE), которой в основном и формируются цифровые сигналы управления ЖК панелью: R0- R5 - красного, GO-G5 - зеленого, ВО В5 - синего цвета и СК - синхронизации. Все они проходят на панель через контакты разъема SC1201 (LCD Source). Совместно с контроллером IC1201 работают микросхемы внешней памяти (FIFO) IC1202 (PD485505) и аналогового мультиплексора 1С 1205 (TC4052BF) Мультиплексированные сигналы GCK приходят на ЖК панель через контакт разъема SC1202 (LCD Gate).

Образцовое напряжение REV с контроллера IC1201 подано на устройство градуировки образцовых напряжений ЖК панели, выполненное на микросхемах IC1102-IC1104 (NJM4565V), 1С 1106- IC1108 (NJM4580V) и IC1105, IC1110 (BU4053V). На выходе устройства формируется пять постоянных образцовых напряжении (V0 V16 V32 V48 V64) по ступающих на ЖК панель через контакты разъема SC1201 и используемых для формирования уровней напряжений строк и столбцов панели.

Микросхема ЦАП IC1101 (MB8346BV) создает десять постоянных уровней А01-А08, А010, А012, управляющих устройством градуировки образцовых напряжений, а сама микросхема IC1101, в свою очередь, управляется цифровыми сигналами DAC1 SC, MPDA и MPCLK, подаваемыми на нее с микроконтроллера IC2001. Последний формирует также сигнал CONTROL, управляющий контроллером ЖК панели IC1201.

На микросхеме 1С 1109 (NJM353M) выполнено устройство общего управления строками и столбцами ЖК панели. Оно создает управляющие сигналы VCOM, CS СОМ и CS СОМ1, подаваемые через контакты разъемов SC1201 и SC1202 на панель. Постоянное напряжение А011 на одном из выходов ЦАП IC1101 обеспечивает режим по постоянному току (BIAS) устройства общего управления ЖК панелью.

Для получения переменных напряжений питания люминесцентных ламп устройства задней подсветки в ЖК панели телевизор имеет две одинаковые платы инверторов А и В. На них собраны преобразователи постоянного напряжения в переменное по схеме, показанной на рис. 19 для инвертора А (обозначения элементов инвертора В отличаются только второй цифрой) Они представ ляют собой автогенераторы, работающие на частотах 30.. .65 кГц. Автогенераторы включают в себя по три (с параллельно соединенными первичными обмотками) импульсных трансформатора Т6751-Т6753 в инверторе А и Т6555- Т6557 в инверторе В (по числу используемых ламп) и по два высокочастотных транзистора Q6751, Q6752 на плате А и Q6551, Q6552 на плате В.

(нажмите для увеличения)

В момент подачи напряжения питания 13 В на повышающих (вторичных) обмотках всех трансформаторов появляются высоковольтные (свыше 1 кВ) импульсы, что обеспечивает начальную ионизацию разрядных промежутков ламп и лавинный пробой в них. После перехода автогенераторов в рабочий режим на вторичных обмотках трансформаторов создается переменное напряжение амплитудой не менее 300 В, которое поступает на так называемые "горячие" (LIGHT НОТ) выводы всех ламп через контакты LH1 -LH3 разъемов Р6751 и Р6551. "Холодные" (LIGHT COLD) выводы ламп (контакты LC1-LC3) подключены к звуковой плате (см. рис. 16 в предыдущем номере). На ней имеются детекторы ошибок ламп, выполненные на сборках полевых транзисторов Q3600-G3602. Упрощенная схема подключения трех люминесцентных ламп HL1- HL3 к инвертору А и цепей на звуковой выходной плате изображена на рис. 20. Сигнал ошибки L ERR через контакт разъема Р3302/Р3301 (см. рис. 13) попадает на микроконтроллер управления IC2001, что обеспечивает кратковременный перевод телевизора в дежурный режим STBY. После пяти циклов включения/выключения ламп, если ошибка не устранилась, телевизор выключается.

Постоянное (DC) напряжение питания 13 В через контакты разъема Р904/Р901 (см. рис. 12 и 13) с платы тюнера проходит на основную плату, где находится источник питания - преобразователь постоянного напряжения в другие постоянные (DC/DC преобразователь), выполненный на ключевом полевом транзисторе Q702 (К2503), импульсном трансформаторе Т701 и микросхеме ШИМ-контроллера IC702 (NJM2377M)

Источник питания формирует хорошо стабилизированные напряжения 3,3 В - микросхемой-стабилизатором IC752 (BA033FP), 5 В - микросхемой-стабилизатором IC751 (AN8005M) и транзисторами Q751, Q753, 31 В - транзистором Q204 с ОУ микросхемы IC201, 28 В - транзисторами Q201, Q202 со вторым ОУ микросхемы IC201 и 8 В - сдвоенными транзисторами разной структуры Q203, а также стабилизированные только за счет обратной связи на ШИМ-контроллер IC702 напряжения 5 и -8 В. Для выключения источника питания в дежурном режиме на DC/DC преобразователь приходит команда STBYc микроконтроллера управления IC2001.

Управление большинством устройств телевизора обеспечивается микроконтроллером управления IC2001 по цифровой шине I2С (сигналы данных SDA и синхронизации SCL).

Остальные три части принципиальной схемы основной платы представлены на рис. 21.

(нажмите для увеличения)

(нажмите для увеличения)

(нажмите для увеличения)

В телевизоре "Sharp - LC-20C2E" возможны три способа вхождения в режим регулировки микроконтроллера основной платы. Для их пояснения на рис. 22 и 23 изображены вид панели управления телевизора, расположенной под ЖК дисплеем, и вид ПДУ соответственно, а также указано назначение кнопок и других элементов.

В первом способе включают питание телевизора и нажимают на кнопку М ПДУ.

Во втором способе предусмотрено сначала одновременное нажатие на кнопки MENU и TV/VIDEO на панели управления телевизора и включение питания, а затем - одновременное нажатие на кнопки уменьшения громкости (-) и номера канала (CHv).

Третий способ связан с соединением вывода 81 или 82 микроконтроллера управления IC2001 основной платы (контрольные точки ТР2001 или ТР2002 соответственно) с общим проводом и дальнейшим включением питания аппарата. В этом случае будет инициализирована память, т. е. такой способ применим при замене микросхем IC2004 или IC2001 в процессе ремонта.

После вхождения в режим, перемещая курсор вверх или вниз кнопками Δ и Δ ПДУ, выбирают необходимый параметр регулировки:

  • напряжение питания +B5V (5,00+0,05 В);
  • установка модели (С2Е);
  • установка размера экрана по диагонали (20 дюймов);
  • регулировка общего режима (напряжения смещения COM BIAS) ЖК панели (до получения наилучшей контрастности);
  • установка уровня черного в каналах сигналов R и В (до получения оптимального баланса белого).

В каждом случае, нажимая на кнопки VOLUME+ и VOLUME- на ПДУ, устанавливают необходимое значение.

Для вхождения в режим регулировки микроконтроллера платы тюнера сначала нажимают на кнопку MENU на панели управления телевизора. Затем, нажимая на кнопку Δ ПДУ, добиваются изображения, показанного на рис. 24, и в течение 1 с нажимают на кнопку М ПДУ. Далее, перемещая курсор вверх или вниз кнопками Д и V ПДУ, выбирают необходимый параметр регулировки.

  • установка размера по горизонтали;
  • установка значений параметров видеотракта (задержка сигнала яркости, контрастность, насыщенность, цветовой тон, задержка АРУ) в соответствии с указанными в таблице.

Значения устанавливают теми же кнопками VOLUME+ и VOLUME- на ПДУ.

При ремонте таких телевизоров необходимо соблюдать не меньшую осторожность, чем при ремонте обычных телевизоров. Весьма желательно работать в антистатическом браслете и на электропроводящем коврике, так как все панели "боятся" электростатических зарядов.

Прежде чем приступить к ремонту, необходимо убедиться в правильности установки параметров так, как это описано выше. Для ориентирования при ремонте на рис. 25 представлено размещение плат и других устройств в телевизоре, а также расположение разъемов. Широкими черными стрелками на нем показаны направления поиска разъемов для облегчения снятия и установки плат.

Рассмотрим возможные неисправности телевизора на конкретных примерах.

1. Нет изображения и звука.

Прежде всего проверяют целостность предохранителей F2-F4 на плате тюнера (см. рис. 14). Если какой-нибудь из них (или несколько) имеет обрыв, то проверяют цепи нагрузки на отсутствие короткого замыкания. При его обнаружении прежде всего проверяют исправность трансформатора T701 источника питания и транзисторов Q702, Q751, Q753 и ключевого элемента Q752 основной платы (см. рис. 21, часть 6).

Если короткого замыкания нет, проверяют наличие постоянных напряжений на выходах выпрямителей и стабилизаторов источника питания. При отсутствии всех напряжений питания проверяют исправность микросхемы IC702, транзисторов Q702, Q703, а также отсутствие обрыва предохранителей FB701, FB708, FB709 и первичных обмоток трансформатора Т701.

При отсутствии какого-нибудь одного питающего напряжения проверяют исправность соответствующего выпрямителя во вторичных цепях трансформатора Т701 и стабилизатора напряжения.

2. Нет изображения.

Проверяют наличие цифровых видеосигналов на соответствующих выводах микросхем IC801 (см. рис. 17, часть 3) и IC1201 (см. рис. 21, часть 4) основной платы. Если обнаружено их отсутствие на выходах той или иной микросхемы, то прежде, чем их заменять (это делают в самую последнюю очередь), проверяют режим микросхемы по постоянному току. Он не должен отличаться от указанного на принципиальной схеме более чем на ±10 %. Лишь после этого принимают решение о замене микросхемы или какого-нибудь из окружающих ее элементов.

Если же на выходах микросхемы IC1201 присутствуют необходимые видеосигналы и они поступают на ЖК панель, то вначале проверяют поступление сигналов и напряжений на микросхему IC1205, а затем - исправность ее самой, а также поступление мультиплексированных сигналов на панель.

Проверяют также поступление образцового напряжения REF с микросхемы IC1201 (см. рис. 21, часть 4) на устройство градуированных напряжений (см. рис. 21, часть 5), исправность входящих в него микросхем IC1102- IC1108, IC1110 и наличие градуированных напряжений на контактах разъемов панели (см. рис. 21, часть 4).

В заключение обследования делают вывод о неисправности самой панели.

3. Нет изображения при подаче сигнала на антенный вход.

Сначала проверяют наличие напряжений 5, 9, 12 и 31 В на соответствующих контактах разъемов тюнера (см. рис. 14). Необходимо иметь в виду, что если напряжения 5,12 и 31 В поступают с источника питания, находящегося на основной плате, то напряжение 9 В стабилизируется микросхемой 15 платы тюнера, которая может выйти из строя. Проверяют также другие стабилизаторы - микросхемы НО, И1 и транзисторы Q18 и Q28, находящиеся на плате тюнера.

Затем проверяют наличие видеосигнала CCVS на выходе тюнера. Его отсутствие указывает на неисправность тюнера. Если сигнал имеется, необходимо проследить (цепь TV V), поступает ли он на вход (вывод 3) микросхемы IC402 (см. рис. 17, части 1 и 3) и на ее выход (вывод 7). Если на выходе микросхемы сигнала нет, то либо микросхема неисправна, либо на ее управляющие входы (выводы 2 и 4) не приходят соответствующие сигналы команд (TV/AV и AV/IR) с микроконтроллера управления IC2001 (см. рис. 17, части 2 и 3).

Если сигнал на выходе микросхемы IC402 есть, проверяют исправность транзистора Q420 основной платы (см. рис. 17, часть 3) и поступление сигнала на вывод 73 микросхемы IC801. Если сигнал имеется, то микросхема вышла из строя.

4. Нет изображения при подаче сигнала на один из видеовходов.

При такой неисправности возможны три случая.

Если нет изображения при подаче сигнала S-VHS (первый случай) на гнездо SC5001 видеоплаты (см. рис. 18), проверяют прохождение сигнала яркости V1 SY - V1 V через видеоплату, контакты разъема Р5001/Р903, микросхему IC402 (выводы 1 и 7) и транзистор Q420 основной платы (см. рис. 17, части 1 и 3) на вывод 73 микросхемы IC801 при соответствующих командах с микроконтроллера управления IC2001 (см. выше). Как и в предыдущей неисправности, если сигнал имеется, микросхема дефектна.

Возможно отсутствие изображения при подаче видеосигнала на контакт 20 разъема SCART (второй случай). Проверяют прохождение сигнала V2 V через плату тюнера (см. рис. 14), контакты разъемов SC902/SC901, транзистор Q421 основной платы (см. рис. 17, часть 3) на вывод 74 микросхемы IC801. Если сигнал приходит, микросхема неисправна.

И наконец, если нет изображения при подаче видеосигнала на гнездо J5001 (третий случай) видеоплаты (см. рис. 18), проверяют прохождение сигнала V3 IN - SY OUT через видеоплату, контакты разъема Р5001/Р903 (см. рис. 17, часть 1), транзистор Q820 основной платы (см. рис. 17, часть 3) на вывод 75 микросхемы IC801. Если сигнал присутствует, микросхема также неисправна.

5. Нет звука в динамических головках.

Проверяют наличие сигналов 34 на выходах (выводы 12 и 8) микросхемы IC3305 звуковой выходной платы (см. рис. 16) и их поступление через контакты разъемов Р304 и Р305 на динамические головки. Если сигналов нет, проверяют режим микросхемы по постоянному току и, прежде всего, наличие напряжения питания 13 В на ее выводе 7. Если режим соответствует указанному на схеме, проверяют поступление на микросхему входных сигналов 3Ч через контакты 8 и 9 разъемов Р3302/Р3301 с основной платы (см. рис. 21, часть 6). На ней проверяют исправность микросхем IC303, IC903 (см. рис. 17, часть 1) и окружающих их элементов а также поступление на них сиг налов DACM R и DACM L с процессора IC901 (выводы 27 и 28 соответственно).

И наконец, проверяют исправность самого процессора IC901, окружающих его элементов и поступление на его входы звуковых сигналов MONOS (на вывод 60) и SIF (на вывод 67) с платы тюнера (см. рис. 14). Может быть, конечно, неисправен и сам тюнер, если оба эти сигнала отсутствуют.

Дополнительно проверяют уровень напряжения блокировки на выводе 53 микросхемыIC2001 (см рис 17,часть2) который должен быть низким. В ином случае звук будет блокирован

6. Нет звука в головных телефонах.

Поиск причины неисправности начинают с проверки наличия звуковых сигналов на выводах 24 и 25 процессора IC901 на основной плате (см. рис. 17, часть 1). Если их нет, проверяют исправность процессора и окружающих его элементов.

Если сигналы присутствуют, сначала проверяют исправность ми кросхемы IC304 и окружающих ее элементов, а затем прохождение сигналов HR и HL (см. рис. 17, части 1 и 2) через контакты разъема Р2003/Р4004 на гнездо подключения головных телефонов J4001. Оно находится на плате переключателей (см. рис. 15).

7. Нет звуковых сигналов на линейном выходе.

Проверяют наличие сигналов 3Ч на выводах 36 и 37 процессора IC901 (см. рис. 17, часть 1). Если их нет, обследуют процессор и окружающие его элементы.

Если сигналы есть, проверяют исправность микросхемы IC902 и, если она и окружающие ее элементы исправны, дальнейшее прохождение сигналов V2R0, V2LO через контакты разъема SC901/SC902 на разъем SCART платы тюнера (см. рис. 14).

8. Нет баланса белого цвета.

В зависимости от цветового оттенка изображения проверяют размахи сигналов RO-R5 на контактах 18-23 разъема SC1201 (см. рис. 21, часть 4) ЖК панели, сигналов GO-G5 на контактах 25-30 и сигналов ВО-В5 на контактах 32-37. Если отсутствуют сигналы R или их размах значительно уменьшен, проверяют исправность резисторов в сборках R1202, R1203, если сигналы G - в сборках R1204, R1205, а если сигналы В - в сборках R1206, R1207.

В случае, когда все резисторы исправны, но каких-нибудь из названных сигналов нет или они малы, обращают внимание на режим контроллера IC1201 и затем принимают решение о его неисправности.

9. Не светятся лампы устройства задней подсветки.

Если не светятся все лампы, го, скорее всего, на контакты 2 разъемов R703/P6755 и R702/P6555 плат инверторов (см. рис. 14 платы тюнера) подана команда блокировки OFLO через разъемы SC902/SC901 с вывода 34 контроллера IC1201 (см. рис. 17, часть 1 и рис. 21, часть 4), останавливающая работу обоих преобразователей. В нормальном рабочем режиме на указанном выводе контроллера должен быть высокий уровень напряжения. Неисправным в этом случае может быть и ключевой элемент Q3603, расположенный на основной плате.

Но наиболее вероятна неисправность, при которой не светятся три лампы подсветки. В таком случае сначала проверяют целостность предохранителей F1 и F5 на плате тюнера (см. рис. 14), через которые проходит напряжение питания 13 В на платы инверторов. Если предохранители целы, проверяют работоспособность соответствующего преобразователя напряжения (см. рис. 19), т. е. исправность его элементов, в первую очередь - транзисторов и трансформаторов.

Если же не светится только одна лампа, то либо она неисправна, либо оборвана одна из обмоток соответствующего трансформатора в преобразователях.

Литература

  1. Самарин А. В. Жидкокристаллические дисплеи. Библиотека инженера. - М.: Солон-Р, 2002.
  2. Крылов Е. Подсветка LCD-дисплеев. - Компоненты и технологии, 2001, № 6, с. 18-20.

Смотрите другие статьи раздела .

В этой статье мы поговорим с вами об устройстве CRT телевизоров (кинескопных ), разберём структурную схему этих аппаратов и немного поговорим о функциях того или иного блока.
Хочу сразу заметить, что статья не претендует на какую-нибудь научность, а носит чисто ознакомительный характер и основана только на личном опыте. Также здесь не присутствует информация о знаниях в области ремонта каких-либо электронных изделий.
Итак, начнём со структурной схемы ЭЛТ телевизоров .
Приведённая на рисунке ниже структурная схема весьма условна и проста, но отражает принцип работы кинескопного телевизора .
Теперь разберём, что же это за буковки в прямоугольничках:
БП – это блок питания;
БУ – блок управления;
ССИ – селектор синхроимпульсов;
СК – селектор каналов;
УПЧ – усилитель промежуточной частоты;
УНЧ – усилитель низкой частоты;
МЦ – модуль цветности;
МКР – модуль кадровой развёртки (КР);
МСР – модуль строчной развёртки (СР);
ЭЛТ – электронно-лучевая трубка (кинескоп).
Маленькие прямоугольнички – это катушки отклоняющей системы кадровой и строчной развёрток.
Теперь коротенько о каждом блоке.
Блок питания (БП)
В современных телевизорах устанавливаются импульсные блоки питания (ИБП).

Что же это означает? А это означает, что первичная обмотка импульсного трансформатора, который используется в таком ИБП, питается импульсами тока изменяющимися по времени. Ширина (время) такого импульса регулируется определённой схемой, чтобы достичь постоянных по величине напряжений выхода. Блок питания обеспечивает питанием все остальные модули и блоки телевизора и имеет два режима работы – «дежурный» и «рабочий». Отличаются эти режимы величиной энергопотребления. Когда телевизор находится в «дежурном» режиме, т.е. выключенным только от пульта, ток на БП всё равно поступает, только в меньшем количестве. По этому производители рекомендуют отключать телевизор кнопкой «сеть» на передней панели.

Блок управления (БУ)
К данному блоку относятся всевозможные кнопки управления телевизором (переключение каналов, громкость, настройки и т.д.), инфракрасный сенсор для управления телевизором от пульта. Также сюда относятся микросхемы памяти и управление включением строчной развёртки.
Селектор синхроимпульсов (ССИ)
Данный селектор из общего видеосигнала выделяет строчные и кадровые синхроимпульсы для блоков, соответственно, строчной и кадровой развёрток.
Селектор каналов (СК)
Селектор каналов – это чувствительный приёмник, который управляется частотой настройки с помощью постоянного напряжения. Селектор выдаёт сигнал, который содержит в себе ПЦТС (полный цветовой телевизионный сигнал). ПЦТС модулируется на одной частоте, которая не зависит от частоты принимаемого сигнала ПЧ (промежуточная частота).
Усилитель промежуточной частоты (УПЧ)
Этот усилитель усиливает сигнал промежуточной частоты (ПЧ), промежуточной звуковой частоты и выделение ПЦТС. УПЧ состоит, в основном, из видеодетектора, усилителя промежуточной частоты звука (УПЧЗ) и частотного детектора звуковой частоты.
Усилитель низкой частоты (УНЧ)
Просто усиливает звуковой сигнал.
Модуль цветности (МЦ)
В модуле цветности происходит декодирование сигналов красного, синего и зелёного цветов и их усиление до нужного значения.
Модуль кадровой развёртки (МКР)
В данном модуле вырабатывается пилообразный, с частотой 50 Гц, сигнал, необходимый для катушек кадровой (вертикальной) развёртки.
Модуль строчной развёртки (МСР)

В этом модуле вырабатывается пилообразный сигнал с частотой 15625 Гц, необходимый для катушек строчной (горизонтальной) развёртки. В состав СР, помимо всего остального, входит ТДКС (трансформатор диодно-каскадный строчный), в котором путём умножения напряжения на конденсаторах, формируется высокое напряжение для анода кинескопа. Вторичные обмотки ТАКСа используются в качестве питания вторичный цепей (16 В, 12 В, 6 В и т.п.).